H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE

Størrelse: px
Starte visningen fra side:

Download "H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE"

Transkript

1 H. TORNEHA VE FOREL$SNINGSNOTER I MATEMATISK ANALYSE Kursus ma1;.ematik 1 f'or f rste ars studerede uder..k behavs Ui versi teta..jll8. tema ti skatucvideskabelige f'akultet~ samt ~or aktuarog stat~t~studerede. K behav,1966.

2 Mat 1, M.A.Forordo Disse ~orelresigsoter er grudlaget ~or matematik 1, matematisk aalyse. De ~ rste kapitler er omredigerede, saledes at de bygger pa det matematikpesum, der ~orudsrettes i gymasiets ye lresepla. Matematikpesum ~ra gymasiets biologiske liie er i om~ag tilstrrekkeligt som grudlag ~or dette kursus, me studeter ~ra dee liie ra rege med at m de vaskeligheder, ~ordi de ikke har de samme matematiske trreig som studeter ~ra de matematisk- ~ysiske liie.

3 M.A. Idledig 1q Me hvad briger Dig til at smile? Der er aldeles ikke oget Forlystede ved Mathematik -- tvertimod I - Fra tekst til e tegig af Fritz Jurgese. Matematik er e deduktiv videskab. Det betyder~ at matematiske udsag ku ases for sade, ar der er f rt et bevis for demo Matematiske beviser bygger pa udsag, som tidligere er bevista Beviste (og derfor sade) udsag kaldes seetiger eller formler. B r opdager tidligt, at ma ka stille sp rgsmalet "hvorfortl~ Derfor ka ma ikke bevis ;:; aile udsag. De fudametale udsag, der ude bevis aerkedes som sade, kaldes aksiomer. De matematiske begreber ma defieres ud fra tidligere idf rte matematiske begreber, me de aller f rste matematiske begreber ka ikke defieres. Ud over de udefierede grudleeggede begreber og aksiomere ma vi ogsa tro pa de logiske slutigsregler, vi beytter i bevisere. De matematiske logik, begrebet "lig med", leere om meegder~ afbildiger og relatioer, teorie for ordede meegder, samt de aturlige tal udg r tilsamme matematikkes grudlag. Disse tilsyeladede forskelligartede emer lader sig ku meget ufuldsteedigt behadle hver for sig. Matematikkes udviklig f rer bade opad og edad. I toppe udledes stadig ye resultater pa basis af vor aktuelle vide. I

4 Mat 1~ M.A. Idledig 2. bude crbejdes der videre mod e stedse klarere f'orstaelse af' grudlaeets ature Desude g res der et stort arbejde f'or at af' korte veje f'ra b~de til toppe. Ude dette revisiosarbejde ville toppe hurtigt blive reserveret f'or et meget lille atal store geier. I pricippet er hele grudlaget udskif'teligt, saledes at ehver bar mulighed f'or at opbygge si ege matematik pa sit eget grudlag~ me det er etop det f'relles grudlag, der giver mulighed f'or mat8matikkes h je udviklig. Selvf'olgelig iddeles matematikke i mage disciplier, og det ka ",odt somme tider se Ud, som om disse hviler pa hver sit grudle,g og i det store og hele virker uaf'hregigt af' hiade. De virkelig store f're-skridt as imidlertid etop ved kombiatio af' f'orskelligartede dlsciplier. Fo::- de uge som lrerer matematik er det vigtigt at ha ikke bli ve::- hregede i matera tikl{es grudlag, me f'ar e chace f'or ogsa at f'a kedskab til arbejdet med de aktuelle problemer i t1toppeh, Derf'or v:u vi i dette kursub bygge pa det grudlag, der kedes f':'a udervi:3ige i gymasiet. Edvidere udbygig af' dette grud:"ag vii f'ide sted, ef'terhade som det b1iver dvedigt. Vi vii i det store og hele beytte de f'ra gymasiet kedte betegeler. De me~st i jef'aldede f'orskel er, at vi ikke beytter de buede af'bilcligspil. E af'bildig f' af' e mregde A id i e mreg:de B skri ves f':a id i Beller f':a ~ B Af'bildige kaldes ijektiv~ hvis origialmregde f'-1(b) til et elemet elemet vilkarligt b E B bestar af' h jst et De kaldes surjekti v 9 hvis bj_lledmregde f'(a) er idetisk med B. De kaldes

5 Mat 1, M.A. Idledig 3. bijektiv, hvis de er bade ijektiv og surjektiv. Vi vii avede de logiske syrboler v (eller) 1\ (og) "* (rc.edf' rer) $=} (alkvivalet red) i (ikke) De f'ire f' rste er bimre relatiosteg. De ra ku smttes reller relatioer - det er s~uedes ukorrekt at skrive 5 1\ 7, gr v r d. Derirod er det korrekt at skrive x 2-4x + 3 = 0 x = 1 v x = 3. Teget ""1 ka soot te s f'ora e relatio, f'. eks. i(x 2 _ 4x + 3 = 0) $=} i(x = 1) 1\ i(x = 3), me det er selvf' lgelig rimeligere at skrive dette pa f'orme x 2-4x + 3 to$=} x t 1 1\ X t 3. Negatio af' et relatiosteg beteges of'test ved geemstregig af' teget, dog aldrig ved ulighedsteg og iklusiosteg. I mmgdeloore beytter vi de soodvalige teg E:9c'~9::)';>9u,rl, samt teget \ f'or overskudsmoogde A\B (moogde af' elemeter, der tilh rer A)me ikke B) og teget C f'or komplemetmrmmgde, altsa A\B = ArICB. De moogdeteoretiske teg, de algebraiske teg +,-,.,:, ordigstegee <9~'>'~' lighedsteget, f'uktiossyrbolere cos, si, log etc, dif'f'eretiatiosteg, itegralteg o.s.v. avedes altid i f'orbidelse med udtryk og aldrig i f'orbidelse red relatioer.

6 Mat 1~ M.A. Idledig 4& e relatio mellem to udtryk. De adre teg er fuktioelle 9 idet de beyttes til fremstillig af mere sammesatte udtryk. Visse bogstaver reserveres som betegelse for kostater 7 saledes at disse specielle bogstaver altid har samme betydig. De t samme grulde'r sel vf lgelig tal tegee 7 heruder ogsa grudtallet e for de aturlige logaritmer samt tallet 7To Vi vil dog tillade os, at avede bogstavere e og 7T i ade betydig~ hvor dot ikke ka bevirke misforstaelser. Srerlig betydig hal' ogle kos t,"'tter, der beteger mregder: N (de aturlige tal, dov.s. de positive,hele tal) Z (de 1}.ele tal) Q (de ratioale tal) R (de reelle tal) C (de kompleksa tal) 0 I di sse tilfrelde har vi foretrukket at scette e accet ovor bog-- stavet 9 " '" i~~z'~~9r ar det avedes i de faste betydig. Derved. bliver og C frie til ade brug. E ade vigtig kostat or o (de torme mmgde). Ellers beyttes de fleste bogstaver sor betegelso for variable y hvilket betyder, at del' idefor visse gramser Im substi tueres adre syr'!joler for dem, evetuel t lwstater, evetuelt sammesatte udtryk~ hvori del' iugar flere variable. Det skal selvf01gelig altid vrere prreciseret (f.eks. ved at det fremgar af' sammehamge), hvilke symboler d.er Im substi tueres.:lo):i hver ekel t variabel. Kvatorere V og :3 er lllatematiske -ceg y som avedes pa

7 Mat 1, M.Ao Idlec1ig 5. rglatioer~ der ideholder variable. Kvatorer er of test betigec1e, idet de variabel or budot til e oller ade mregde. 3QX(X2+2<3x) betyder~ at der eksisterer et ratioalt tal x, saledes at x 2 +2<3xo Nu er det upraktisk at tumle med for mage idices, sa vi vii i regle foretrrekke at skrive ( 1 ) 3x E Q (x < 3x). Tilsvarede (2) Vx E R ( x > x ) Her er (1) og (2) relatioer, som ikke mere afhreger af e variabel, idet kvatorere bevirker, at x far ophrevet si status som variabel. Relatioe (1) berettiger os til at vrelgo et ratio- 2 alt tal p, saledos at p + 2 < 3p. Symbolet fx E Q I x < xj boteger m~gde af ratioale tal X9 for hvilke x < x Symbolet or e kostat, og vi bemrerk.or, at det redrer e relatio til et w..1tryk. Dar Im gives mage adre eksempler pa udtryk og relatioerjl der ideholder betegelser for e variabel, hvoraf urltrykkot eller relatioe ikke afhreger: b 1 f(x)dx afhreger ikke af x, a ~ a k afhreger ikke af k k=1 Det or ude betyc1ig om vi udskifter betegelse for e sada flpassivil variabel med et adet bogstav. Det er altid sil~rest at betegc e tlpassiv" variabel mod et bogstav, der ikke forekommer uclofor (let symbol, i hvi s betegelse de passive variable idgar.

8 Mat 1y M.A. Idledig 6. :avis dette symbol "dumper ed fra himle" med de "passive" variable beteget med et bog8tav~ der ogsa forekommer udei'or teg - ot y er det sikrest at skifte betegelse, da ma ellers fristes til at bega fejl. Saledes er forkert. Derimod er - l.} k(-k) = k k=1 k=1 l.} (-k) = 1 (-1) 2 1 k l.} k(-k) k=1 = ~ l.} j(-j) = j=1 Vi skal ikke opholde os mere ved sp rgsmalet om de matematislw symbolik. Det vii vcere forkert at slutte idledige u- de et fors g pa E't forklare, hvad matematisk aalyse er. Det er imidlertid ikke sa let, som ma skulle trot Lad os jes med at sige~ at matematisk aalyse beskceftiger sig med kotiuitet og grreseovergag. Nu skal vi imidlertid ikke udelukkede beskceftige os med matematisk aalyse. Al modere matematik beskceftiger sig med mregder~ som pa e eller ade made er orgaiserede. Algebra boskceftiger sig med mcegder, der er orgaiserede ved regeoperatioero Topologi beskbftiger sig med mregder, der er orgaiserec1e, saledes at begrebet "kotiuert af'bildig" far meig. E topologisk orgaisatio bestar i, at visse scerlig udmrerkede delmreg- Jer fremhreves, f.eks. omege af et elemet af mregde. Matematisk aalyse hadler om mregder, som har bade algebraisk og topologisk strulctur. Derfor er det aturligt 9 at vi ogsa taler om topologi.

9 Mat 1, ~,LA. Idleciig 7. For de$ som skal lrere matematik 9 er det vigtigt at Eors ge selv at skabe matematik. Matematikke udvikler rutiemetoder' til l sig af specielle typeopgaver. Avedelse af sadae rutiemetoder er ikke matematik. Udviklige af rutiemetodere er matematik. Ikke al matematik er svcer. DerEor er dot muligt at suppi ere et kursus som det Eoreliggede med et meget stort atal lette velsesopgaver. Ku Ea ae disse or velse i brug ae rutiemetoder. DerEor skaoer ma matematik y ar' ma l ser opgavere og fider frem til e pre Eormulerig ae l sigere. Det h rer ~ed til spillereglere i matematikke? at ma ku prceseterer det Ecerdige produkt. Overvejelser, ideer, Eorel bige bevisskitser? redaktiosarbejde Eoregar i d lgsmal, og ku det E~rJibe bevis publiceres. I disse forelresigsoter vii vi ikke altid overholde diese regler, me lejlighedsvis E lge de meget upcedagogiske metode, der tillader eleve at opdage, hvorda lrerere selv fumier med problemere. Metematikke bliver aldrig E~rdig. Ogsa dette kursus eeterlader utallige l se eder. Der vii blive spudet videre pa ogle ae disse i de E lgede kurser. Bladt de l se eder Eides ogsa virkelibe ui ste problemer. De reldste ae disse stammer Era oldtide. Arbejdet pa de matematiske bygigs top giver os stadig Ye opdagelser, og disse virker tilbage og ispirerer amdriger bade i matematikudervisige og i de metoder? med hvilke ma agriber de klassiske ui ste problemer u Saledes er matematikke altid levede og Eoraderlig

10 Mat 1, N.A.1.1 Nous croyos que la mathematique est destiee a survivre. N.Bourbaki Kapi tel 1. Tal. De reelle tal blev idf rt i gymasieudervisige~ og vi vii her idskrreke os til e skitsemressig geemgag af de fra gymasiet kedte tig Qg e mere grudig behadlig af ogle tilf jelser. Vi vii dog f rst omtale begrebere kompositiol1srogel og gruppe~ samt lidt mere udr rligt begrebere rig og legeme~ som ku behadles i gymasiets matematisk-fysiske liie. Def'iitio 1.1. Ved e kompositiosregel pa e mregde M forstas e ai'bildig cp: M x Mid i ~.1. Vi f'oretrrekker at udtrykke kompositiosregle vcc1 et teg~ f'.eks. +, altsa skrive cp(x~y) = x + y Defiitio 1.2. Kompositiosregle + kaldes associativ~ hvis Vx,y,z E M((x+y)+z) = x+(y+z)). Hvis + er associativ har xi + + x e gaske bestomt betydig~ saledes at pareteser slet ige rolle spiller. Derimou al'hreger ud trykket af leddee s rrekkef lge. Defiitio 1.3. Et elemet u E M kaldes eutralelemet for kompositiosregle +, Bafremt Vx E M (x + u = u + x = x) ka DetVvises, at e kompositiosregel har h jst et eutralelemet o

11 Mat 1, M.A. 1.2 Def'iitio 1.4. Lad + vwre e kompositiosregel pa Iv! med eutr8.1elemet u. To elemeter x,x 1 E Iv! med hesy til +, saf'remt kaldes hia-des iverse L8.d os atage, at + tillige er associativ. Det ka da vises, at hvcrt elemet har h jst et iverst. Hvis a,b E M og 8. har et iverst elemet a, 1 ka det vises, 8.t ligige a + x = b har a 1 + b som si eeste l sig, og at x + a = b har b + a 1 som si eeste l s±g. Def'iitio 1.5. E mwgde G med e kompositiosregel + kaldes e gruppe, hvis + er associativ og med eutralelemet, og edviclere hvert elemet af' Ghar et iverst elemet. Eksempel. Mwgde F(A,A) af' 8.11e bijektive af' bildiger f' :_t icl i A, idet A er e vilkarlig mwgde, udg r e gruppe med sammesmtige f' 0 g som kompositiosregel. De idetiske 8.f'- bildig er eutralelemet, og de iverse af'bildig bliver ogsa det iverse elemet af' gruppe. Def'iitio 1.~. E kompositiosregel + pa e mamgde Iv! kaldes kommutl1tiv, saf'remt Vx,y E M (x + y = y + x). x 1 + Hvis + er bade associativ og kommutativ, af'hwger.. 0+ x ikke af' elemeteres rwkkef' lge. E gruppe G)hvis kompositiosregel er kommutativ, kaldes e kommutativ gruppe eller e abelsk gruppe. I det f' lgede beskwf'tiger vi os med e abelsk gruppo G med kompositiosregel + og eutralelemet 0 (ulelemetet). Det iverse clemet til a beteges -a, og b +(-.) skrives b - fl.

12 M.A. 1.3 Vi kaljer -a det modstte elemet. Vi vii treke os, at der pa G er 8du e komposi tiosregel.vi vii ot'te udelade det adet kompositiosteg. Det'iitio 1.7. Vi siger, at. er distributiv med hesy til +, sat'remt Vx~y~z E G ((x+y)z = Xz+yz A X(Y+Z) = xy+xz) 1.S. Hvis' er distributiv med hesy til +9 grelder VX,y E G(O x = x'o = 0 1\ - x y = x'-y = -(xy)i\-x _y=xy). Bevis. At' O'x + O'x = (O+O)x = O'x t' lger, at O x =0 9 idet O'x + y = O x ikke h8r adre l siger ed y = O. Aalogt vises x'o = O. At' -x'y + x'y = (-x+x)y = O'y = 0 f lger9 at -x'y og xy er modsatte elemeter, altsa -x'y = -(xy). A~logt vises, at X'-y = -(xy). Herat' t' lger edelig -x _y = -(x'-y) = -(-xy) = xy, idet -(xy) ku har et modsat elemet, emlig xy. Vi skl ikke opholde os ved beviset t'or, at (x-y)z = xz-yz og z(x-y) = zx-zy. De distributive loy giver os mulighed t'or at multiglicere summer et'ter regle (x+y)(z+v) = xz+xv+yz+yv. Rreklcet' lge at' de t'ire led er ude iili'lydelse pa summe, me ombytig at' t'aktorere i de ekelte led ka tcekes at redre derme. Mere geerelt har vi t'or t'lerleddede summer m ~ x. ~ y. = j=1 J j=1 J m ~x. j=1 J k=1 ~Yk= m ~ Z x'yk j=1 k=1 J L.:.eg mffirke til, at vi t' rst s rger t'o: at bruge t'orskellige sum-

13 Mat M.Ao 1.4 matiosidices i de to summer. Det sidste udtryk agiver summe a.f aile produkter x j y k, hvor j er et a.f tallee 1' lim? medes k er et a.f tallee 1,,. Deriitio 1.9. De abelske gruppe G med de ekstra kom-.qositiosregel ' kaldes e rig, hvis er distributiv med hesy til + samt associativ. Eksempel. E gruppe G bli ver til e rig ved de.fii tioe 'l/x,y E: G(xy = 0). E rig med. dee trivielle produktde.fiitio kaldes e ulrig. Eksempel. Mregde a.f polyomier med hele tal (ratioale tal, reelle tal) som koe.f.ficieter og med operatiosreglere + og uc1g r e rig. Det'ii ti o E rig G kalde s et legeme 9 hvi s er komrutativ9 har et eutralelemet, og hvis yderligere ethvert elemet udtage 0 har et iverst. Neutralelemetet beteges 1 (etele:8t) og iverse elemeter kal de s reciprolce. Det iverse elemet til x beteges x- 1 For a t 0 har ax = b altsa etop e l sig, og de beteges b eller b/a ejler b:a a Sretig 1. 1'_. Lad G vrere et Ie geme. Vi har da Vx,y E: G (xy = 0 ~ (x = 0 v y = 0)) Bevis. At' x;r = 0 og x t 0 t' lger y = 1'y = (x- 1 x)y = x- 1 (XY) = x- 1 0 = O. Eksempel. Et legere ideholc1er i hvert.fald de to elemeter 0 og 1, og med disse to elemeter reges altid et'ter reglere 0+0 = 0; 0+1 = 1+0 = 1 0'0 = 0'1 = 1"0 = 0; 1'1 = 1.

14 Mat M.A. 1.5 Tilbage er blot 1+1. Det m~ grelde, at 1+1 ~ 1+0 = 1, me det t'orhidrer ikke, at 1+1= 0 0 sam et legeme. Ved dette valg orgaiseres f0911 Hvis M er e mregde med e kompositiosregel cp:m x Mid i M 9 som sl{ri ves cp (X9 y) = x+y, og A og B er delmamgde r at' M I er det a turligt at betege billedmamgde cp (A x B) med A+:S. I overesstemmelse hermed det'ierer vi ~et'iitio Lad G vrere et legeme, og lad A og B vrere delmwgder at' G. Vi defierer da A+B = fx+y I x E A AyE BJ -A = f-x x E Al; A-B = A+(-B); AB = f xy x E A AyE BJ, og t'or 0 A edvidere For 8. E: M skriver vi a+b og ab istedet t'or f8.j + B og fajb Eksempler: 0+A = 0A = -1 = 0. O+A = A; O'A = foj; 1"A = A; -1'A = -A Dut'ii tio ":.13. Et legeme G kaldes et ordet legeme 9 hvi s der foruligger e klasseiddelig af G\foJ i to klasser G+ og G_ 9 s~ledes at f lgecle 2 betigelser er opt'yldt: 1 ) Vx E G (-x E G ) - + 2)

15 M.A. 1.6 Elemotere i G+ kaldes positive og elemetere i G kalc1es egative. St:etig Hvis G er et orde~ legeme, grolder Vx E G (-x E G ). + -, Vx E G+Vy E G_(xy E G_) Vx, Y E G _ (x+y E 2 G /\ xy E G+); Vx E G(x=O v x E G ).1 E + ) G+ Bevis. Af x E G+ f lger x ~ O~ altsa -x ~ 0, altsa -x E G+ eller -x E G Me -x E G ville medf re 0 = (-x+x) E G, hvil ket il{ke er rigtigt. Altsa grelder -x E G_ o M x E G+ y y E G_ f lger -y C' G+, alts3. -xy = x'-y E G+, al tsa xy E G_o M x~y E G_ f lger '-x, -y E G+, al tsa -x-y E G +' al tsa x+y E G Edvidere xy = -x'-y E G+o,[;ilor x E G+ oller x E Ghar vi altsa x 2 E G+, og spe',clel~~ gj31de~ 1 = 12 E G+ o Dermed er alle pastadee bevist. D :::fii ti olj.2. For x, y E G, hvor G er et ordet legeme y deficrjs relatio~e x < y ved x < y <=> y-x E G + Vi skr-i "ler x ~ y i stedet for x<y v x=y. Rela tioe x < y skri yes ogsa y ) x og x ~ y skrives ogsa y ~ x.!atj.!lb 1.1 ii. For et ordet legeme G grelder Vx 9 y,z E G(x < Y <=> x + z < Y + z) E G 'liz E G (x < y <=> xz < yz). + B(~vis" De :' rste pastad f lger at', at y-x = (y+z)-(x+z). :0 Af x < ~r9 Y < z fljlger y-x E G+ 9 z-y E G+, al tsa z x = (:~-y)+(y-x) E G+, altsa x < z. Af x < y og z E G+ f lger tilsvarudo zy-zx = z(y-x) E G Af sretig 1.14 f lger u~ da 1 t?- t -X )y. l!!eclf.yj.r~!:1 z - 'z = 1 E G 9 rr; z-1 E: G 9 al~xzz 1< yzz eller x < y. Der + + med or fl33tige l Jevisto

16 Mat 1~ M.A. 107 Dermed har vi vist, at de fra gymasiet kedte regler for regig med uligheder er gyldige. Vi skal seere berige disse regler ved at bevise ogle mere dybtliggede uligheder. Defiitio Lad x vrere et elemet fra et ordet legeme G. Elemetet kaldes de umeriske vrerdi af x., x, hvis x E G + Ixl = J 0, hvis x = 0 \ [, -x, hvis x E G Scetig For et ordet legeme gcelder Vx E G (x ~ 0 => I xl > 0) Vx,y E G (jlxl-iyii ~ Ix+y/ ~ I xl + Iyl) Vx,y E G (Ixyl = Ixl I yl ). Bevi s. De f rste pas tad f lger umiddel bart af c1efii tio- e. De sidste f lger af scetig 1.8. Ai' x ~ lxi, y ~ Iyl f lger x+y ~ Ixl+lyl. Af -x ~ lxi, -y ~ Iyl f lger -(x+y)~lxl+iyi 0 Dermo~ har vi vist, at Ix+yl ~ Ixl+lyl. Her~f f lger Ixl = Ix+y +(-y)1 ~ Ix+yl + IYI, altsa Ixl-Iyl ~ Ix+ylo Aalogt fas Iyl - Ixl ~ Ix+YI. Dermed er scetige bevist. Vi svidlede ved at idf' re betegelsere 0 og 1 for de to eutrlelemeter i e rig og dermed i et legeme. Der er selvf lgelig itet i veje for, at f'orskellige rige (eller legemer) kg h~ve forskellige eutralelemeter, og sa er det forkert at 8.vee-:'e samme betggelse. De slags u jagtigheder i matematik hcever sig ved)at der seere i teorie optrceder resultater, som er idbyrdes modstridede, og dermed bliver hele teorie gaske yttel s. Forsydelser som de her omtalte optrceder imidlertid

17 Mat meget hyppigt i matematik - i det foreliggede tilfrelde ka vi a lagt, ude at forsydelse vil virke geerede, og sa lrege det gar godt, vil forsydelse spare os e del skriveri. Vi oterer os, at ogsa elemetere 1+1, 1+1+1, bliver frolles for alle rige og legemer. I et ordet legeme bliver disse elemeter alle idbyrdes forskellige (eksemplet efter sretig 1.11 viser, at dette ikke beh ver at grelde for ikke ordede legerer, og dermed tillige,,qt vort esartede valg af betegelser var uberettiget). Elemetere 1, 1+1, 1+1+1, udg r mregde N af ~turlige tal. Vi uderstreger, at N er e gaske bestemt mregdc 9 og de her omtal te delmamgde af et ordet legeme er stregt taget ikke mamgde N, me e "kopi II af de e mregde. Mamgde 2 = fi IJ r oj tj - N er mamgde af hele tal, og det ordede legeme ic1eholder ogsa e kopi af de e mamgde. Med regeoperatioe + er Z e gruppe. Produktet af to elemeter fra N er ige et ele-, met fra N, og heraf f lger, at det tilsvarede grelder for elemetor fra 29 Altsa er Z e rig. Ovestaede er selvf lgelig ikke e tilfredsstillede idf\drelse af N og Z. Vi ka ikke behaclle summere ude at kue trelle, hvor mage ettaller der er, og dertil beh ver vi etop de aturlige tal. Idf relse af N h rer med til matematikkes grudlag, me vi vil her ga ud fra, at vi ka stole pa vor ituitive'forstaelse af de aturlige tal. For det ordede legeme Ghar vi u N c 2 c Go For a E N, b E Z har ligige ax = b e l sig i G. Hvis a 1 x = b 1 og a 2 x = b 2 har de samme l sig x, far vi a 2 b 1 = R 1 R 2 x = a 1 b 2o Pa de ade side har a 1 x = b 1 de samme

18 Mat M.A. 1.9 som 1 sigva1a2x :; a 2 b 1 og a 2 x ::: b 2 har de samme l sig som a 1 a 2 x ::: a 1 b 2, og a~ a 2 b 1 ::: a 1 b 2 ~ lger der~or, at de to ligiger har de samme l sig. Hermed begruder ma let br kregige og Mregde a~ br ker med treller ~ra Z og wver ~ra N udg r legemet ~ a~ de ratioale tal. Det er ideholdt i ethvert ordet legeme. Det er meget let at vise, at e br k ka briges pa ~orkortelig ~orm. Det er ret vaskeligt at vise~ at dette ku ka g res pa e made, me det er bevist i gymasiet~ og sp rgsmalet vil blive diskuteret mere grudigt i matematik 2. De~iitio Ved e ~ lge pa G ~orstar vi e a~ildig ~:N id i G. Vi skriver ~() = a E G og beteger ~ lge (a). De~iitio F lge (a) siges at kovergere mod a E: G 9 hvis ~ lgede betigelse er op~yldt og vi skriver da (a) ~ a(midre korrekt a ~ a). F lge (a) kaldes koverget, hvis der eksisterer et a E G 9 saledes at (a ) ~ a~ Hvis dette ikke er til~reldet, kaldes ~ lge diverget. Eksempel. Hvis ~ ::: a ~or alle E: N)grelder (a) ~ a. Fa visse ordede legemer har ehver ~ lge ~ra et vist tri lig a. (a) ~ a alle elemeter 1 o < '2B < B Af ~ 2 = 1 og 1-~ = ~ sluttes 0 < ~ < 1 og ~or B > 0 altsa

19 Mat 1, Smtig Lad (a) vmre e f lge pa G. Af (a) ~ a og (a) ~ b f lger a = b. Bevis. For 8 E G+ ka vi vmlge 1 saledes at la-ai ~ ~8 og Ib-al ~ ~8. Heraf f lger imidlertid Ib-al~lb-al+la-al ~ 8. Dermed har vi bevist 1 at Ib-al er ~ ethvert elemet i G+o Af Ib-al E G+ ville f lge ~lb-aie G+ og ~Ib-al Ib-al = O. Dermed er sretihge bevist. < Ib-al. Altsa er Defiitio E f lge (a ) pa G kaldes voksede, hvis - "I E.: N(a ~ a + 1 L stregt voksede 1 hvis V E N(a < a _ 1 ). Aalogt defieres aftagede og stregt aftagede. Elcsempel. () Og(~1) er st~gt voksede f lgero Hvis (a) er (stregt)voksede 1 er (-a)(stregt)aftagede. Defiitio Lad A ~ G vrere e delmmgde. Et elemet a E G kaldes majorat for A, hvis Vx E A(a ~ x). Hvis A c Ghar e majorat, kaldes A opad begrmset. Aalogt defieres miorat og edad begrmset. Hvis A er bade opad og edad begrreset, kaldes A begrmset. Ved e majorat (miorat) fer e f lge (a) pa G forstas e majorat (miorat) for mmgde fa I E Nl. F lge (a) Imldes begrmset (opad, edad)1 hvis mregde fal E NJ er begrreset (opad 9 edad). Eksempel. F lge (-1L1) har 1 som majorat og 0 + som mio rat? og er s~uedes begrreset. P lge () har 0 som miorat og er S~lledes edad begrmset. Itet elemet af Q er mrjorat for (), me det ka trekes, at () har e majorat i G. Mmgde G er hverke opad eller edad begrmset. Smtig Ehver koverget f lge er begramset. Bevis. Af (a) ~ a f lger, at der eksisterer tal N E N9

20 Mat 1, M.A. 1~11 saledes at V N(la-al ~ i). For ~ N grelder da, at a-1 ~ a ~ a + i. Heraf f lger, at det midste af elemetere a-1,a,,a _ er e miorat, og at det st rste af elemetere 1 N 1 a + 1, a,,a _ er e majorat 0 1 N 1 Defiitio Et elemet beg kaldes supremum for mregde A ~ G, og vi skriver b = sup A, hvis b er de midste majorat for A. Et elemet a E G kaldes ifimum for A ~ G, og vi skrivcr a = if A, hvis a er de st rste miorat for A. Det fremgar heraf, at e mregde, som har et supremum (ifimum) or opad (edad) begrreset. Det er edvidere klart, at it A og sup A er etydigt fastlagte ved de foreskreve egeskaber, hvi s de overhovedet eksisterer. Dksempel. I legemet Q har mregde f~1 I E N1 supremum 1 og ifimum 1. Mregde N har ifimum 1 me itet supremum. Mregde fx E Qlx 2 < 21 har hverke ifimum eller supremum. Sretig N dvedigt og tilstrrekkeligt for, at beg er supremum for A ~ G or, at f lgede betigelser er opfyldt Vx E A(b ~ x),.aalogt for ifimum. V8 E G 3x E A (x > b - 8). + Bevis. De f rste betigelse udtrykker, at b er majorat for..:\., og de ade betigelse udtrykker, at itet midre tal er m8jorat for A. Deraf f lger pastade umiddelbart. Vi bemrerker, at lighedsteget i de f rste betigelse er idet b = sup A ka vrere et elemet af A. Derimod er det ude betydig, om der i de sidste betigelse krreves > ellor ~. Tilsvarede er det uvresetligt, om der de to steder i

21 Mat 1~ M.Ao 1.12 de~iitio 1.20 skrives >«) eller (~). De~iitio Et par (A~B) a~ delmregder A ~ G, B ~ G kaldes et sit i G~ ss.~remt ~ lgede betigelser er 0:9~yldt: A ~ 0, B ~ 0, A u B = G Vx E A Vy E B(x < y). Sittet (A~B) siges at vrere bestemt a~ elemetet c E G, sa~remt c cr dct st rste elemet i A eller det midste elemet i B. Hvis c er det st rste elemet i A, bestar B etop ~ alle elemeter, som er st rre ed c, og B har da itet midste elemet. Hvis B har et midste elemet~ ses aalogt, at A ikke har et st rste elemet. Et sit er der~or bestemt a~ h jst et elemet a~ G, og et elemet at' G bestemmer' jagtigt 2 si to Dar ka evotuclt eksistere sit i G, som i~ce er bestemt a~ oget elemet a~ G. Sretig Hvis et ordet legeme Ghar e a~ ~ lgede tre egeskaber, har Galle tre egeskaber: 1 ). Ehver opad begrreset ikke tom delmregde a~ Ghar et supremum. 2)0 Ethvert sit i G er bestemt a~ et elemet a~ Go 3). Ehver voksede, opad begrreset ~ lge pa G er koverget. Bevis. Sretige udtaler, at pastadee 1),2) og 3) or 10- gisk rekvivaleto, altss. at ehver a~ dem med~ rer de to adre. Dette vil v~re bevist, hvis det lykkes at vise implikatioere 1) =>2), 2) => 3) og 3) => 1). Vi agriber e ad gage.

22 Mat 1, M.A ) - 2). Vi atager at 1) gmlder. Lad (A,B) vmre et sit i U. Ethvert elemet i B er e majorat for A. Af 1) ~ lg8r derfor eksistese af et elemet 0 = sup A. Da 0 er majorat for A, er o ~ ethvert elemet i A. Da 0 er de midste majorat for A~ er o ~ cthvert elemet i B. Da 0 tilh rer A eller B, cr c det st rste clemet i A eller det midste elemet i B. Dermed bar vi vist pas tde. 2) - 3). Vi atager~ at 2) grelder. Lad (a) vmre e voksede, opad begrmset f lge pa G. Lad B vrere mmgde af majorater for (a)' og lad A vmre overskudsmmgde G\B (mmgde af elemeter af G, som ikke er elemeter af B). Vi har abebart A t 0, B ~ og A IJ B = G. Af a A f lger, at a ikke er majorat for (a)' Der ~ides altsa et, sa a < ao Me for b B er a < b. Altsa er a < b. Dermed har vi vist, at (A,B) er et sit. Af 2) f lger u, at der fides et elemet 0, som er st rst i A eller midst i B. Vi vii Vise, at (a) -+ o. Lad 8 vrere et elemet af G+. Vi har da 0-8 A, 0+8 B. Altsa er 0+8 majorat for a 9 og vi har 'V N(a ~ OH:: ). Da 0-8 ikke er majorat for a' eksisterer N N, sa an > 0-8. Me da (a ) er voksede, f rer dette 'V ~ N(a > 0-8). Dermed har vi vist, at 'V? N(/a-a / ~ 8). Dermed har vi vist pastade. med- 3) - 1). Dette bevis er e hel del mere subtilt ed de to foregaede. Vi bemrerker f rst, at f lge () ikke er koverget. At () -+ 0 G f lger emlig, at vi ka vrelge, saledes at I-oj ~ ~ og /+1-01 ~ ~, me det ville medf re, at 1 ~ /(+1-o) + (o-)/ ~ /+1-o/+/o-/ ~ ~, hvilket ik.ke er rigtigt. Lad os u atage, at 3) gmlder o Vi ka

23 Mat 1, IvI.Ao da slutte? at f lge () ikke er opad begrffiset. Lad u A ~ G vrore opad begrceset. Der eksisterer da e majorat b for A. Me b er ildw majorat for () 0 Al tsa ka vi vrolge N E N, salede s at h < N, og sa er N e majorat for A. Da () ikke er opad begrreset, er (-) ikke edad begrreset, og vi far derfor aalogt~ hvert j E N betragter vi aile tallee ~, hvor. 2 J P ~ - 2 J N 1 er -lj ikke majorat for A, me for p 2 at vi lea vrelge N1 E N, sa -N 1 ikke er majorat for A. For etp E Z. For jorat for Ao Heraf f lger, at vi for hvert j E N ka vrelge det st rste tal p. E Z, for hvilket ~ ikke er majorat for A. p. 2- J 2 j er ~ = ~ Pj+1 2 J 2 j+1 ' og det medf rer, at Pj+1 ~ 2pj eller j+t? 2 :g. Altsa or (~) e voksede f lge pa G, og da itet af des ele- 2 J meter er majorat for A, er de opad begrroset og derfor koverget mod e grrosevrerdi a. For b > a er b-1- ikke majorqt for -a (), og vi ka derfor vrolge E N, sa > b2a,altsa ~ < b-a. Me sa &q vi ogsa vrolge j E N, :p. ytter, at ~ S a at 2 J -, sa 1 < b-a. Sa far vi, idet vi ud- 2 j p.+1 og da ~ er e majorat for A, er b e majorat for A. Altsa 2 J er itet elemet af II. st rre ed a. Dermed har vi vist, at a er e majorat for A. For b < a ser vi gaske aalogt, at vi lea vcelge j E N, saledes at _1 < a - b, og vi far da, idet vi udytp.+1 ter, at...l- er majorqt for A, og derfor ~ a, at 2 j 2 j ~ 2 j = Pj ~2 a > b 2 j - j, J hvilket viser, at b ikke er majorat for A. Dermed har vi vi st:

24 Mat M.A at a er de midste majorat ~or A9 altsa9 at a = sup A~ og dermed er sretige bevist. A~ bevisets sidste a~sit ~remgar u, at de ordede legemer, der har de i sretig 1.28 omtalte egeskaber, tillige har de i ~ lgede de~iitio omtalte egeskab. De~iitio Et ordet legeme G kaldes Archimedesk, hvis delmregde NeG ikke er opad begrreset. Dot kommer ud pa det samme at ~orlage~ at ~ lge () ikke er begrreset, og det er ige esbetydede med, at der til ethvert elemet a~ G svarer et aturligt tal som er st rre. Dette er ige esbetydede med, at (~) ~ o. Aksiom Mregde R a~ reelle tal or et ordet legeme, som har de i sretig 1.28 omtalte egeskaber. Dette er ikke e defiitio. For det ~ rste, er det ikke pa ~orhad klart, at der eksisterer ordede legemer med de omtalte ogeskaber. Fa de ade side er det klart, at der ~ides mage, hvis der ~ides et. De ~ rste vaskelighed kue overvides ved kostrukti vt at opbygge et legeme med de slwde e- ge11.s1~aljor som e udvidelse a~ ~~, der ige kue opbygges som e udvidelse a~ N. Dette er virkelig geem~ rligt9 me ret o Det ville ogsa klare de ade vaskelighed9 idet kostrlli~tioe ville give et gaske bestemt ordet legeme o Dot er imidlertid ogsa rigtigt~ at alle legemer, der har de i sretig 1.28 omtalte egeskabor, i e vis forstad or es, sa det ilti~e spiller oge rolle, hvilket a~ dem vi udrever til R. Elemetere a~ R kaldes (reelle) tal. Vi siger reol tal ~ lge i stedet ~or ~ lge pa R. Nar e tal~ lge (a) kovergorer mod a E R kaldos a grresevrerdi ~or (a ). Vi siger ovortal og 11.

25 Mat 1, M.A udertal i stedet for majorat og miorat. Lejlighedsvis beytter vi topologisk ispirgrede betegelser og kalder R de reelle talliio eller talakse, og et tal a E R kaldes da ogsa et pukt af de reelle talakse. Sretig Hvis e mregde A ~ R er edad begrreset, eksisterer if A og if A = -sup(-a). Ehver aftagede, edad begrwsot f lge pa R er koverget. BGvis. Hvis a E R er udertal for A er -a overtal for -A. Heraf f lger de f rste pastad umiddelbart. Hvis (a ) er afta gede og edad begrreset, er (-a) voksede og opad begrreset, altsa koverget. Heraf f lger de ade pastad. Defii tio )'~ Ved de udvidede reelle talakse R' f'or-, ~:( star vi mamgde R =:R tj f - oo,ooj ordet, saledes at ordige stemmer med ordige pa R, og saledes at 00 er det st rste og - 00 det midste elemet. Regeoperaloere pa :R udvides delvis til R~;;, idet vi sretter a + 00 = = 00 for a E R og a - 00 = = -00 for a E R samt a 00 = 00 '00 -a. 00 = = -00, a. -00 = = -00 og -a -00 = =00 for a E R + "( Nu er 00 majorat og -00 miorat for ehver delmregde af ft", og det bevirker, at sup A og if A bliver defierede for ehver >;' iklm tom mregde A c;: R'. Hvi s A har et overtal, der tilh rer R, bliver sup A det samme som f r. I modsat fald bliver sup A = 00 Aalogt for ifimum. Vi bemrerker, at de tomme mregde ~j far et- >!< hvert tal i R som bade overtal og udertal, og derfor far de -00 som supremum og 00 som ifimum. Vi vii foretrrekke ku at defiere if A og sup A for A 1 0, sa vi altid har if A ~ sup A.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Med PEI A på langtur (del 4) (Gdan s k Kaliningrad)

Med PEI A på langtur (del 4) (Gdan s k Kaliningrad) Med PEI A på langtur (del 4) (Gdan s k Kaliningrad) To r s d a g m o r g e n G d a n s k - sol og vin d fra N o r d. H a v d e aft al t m e d ha v n e k o n t o r e t at bet al e ha v n e p e n g e n e

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne De komplekse tals historie side 1 Institut for Matematik, DTU: Gymnasieopgave I. De komplekse tals historie Historien om 3. grads ligningerne x 3 + a x = b, x 3 + a x 2 = b, - Abraham bar Hiyya Ha-Nasi,

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Geometrisk Optik. Teori og forsøg

Geometrisk Optik. Teori og forsøg Geometrik Optik Teori og orøg Køge Gmaium 004-005 Ole Witt-Hae Idold Kap. Geometrik Optik.... Strålegage i toer.... relekio i et plat pejl... 3. elekio i et kokavt ulpejl... 4. elekio i et kovekt ulpejl...6

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

Den servicemindede økonomi- og regnskabsmedarbejder

Den servicemindede økonomi- og regnskabsmedarbejder De servicemidede økoomi- og regskabsmedarbejder 25. og 26. marts 2009 Tekologisk Istitut Taastrup 16. og 17. april 2009 Tekologisk Istitut Århus Få idsigt og redskaber, der styrker service og rådgivig

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler?

Til dig, der er lærerstuderende Kender du VIA CFU Center for Undervisningsmidler? Ti dig, der er ærerstuderede Keder du VIA CFU Ceter for Udervisigsmider? - for dig og di udervisig VIA CFU - tæt på di og skoes praksis Når det kommer ti æremider, er VIA Ceter for Udervisigsmider eer

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia

ERHVERVS- OG BYGGESTYRELSEN. Huseftersyn. Tilstandsrapport for ejendommen. Sælger: Kirsten Hammerum. Postnr. By 7000 Fredericia ^ ERHVERVS- OG BYGGESTYRELSEN Huseftersy Tilstadsrapport for ejedomme Sælger: Kirste Hammerum dresse 6.Jullvej93 Postr. By 7000 Fredericia ato Udløbsdato 3-07-200 3-0-20 HE r. Lb. r. Kommuer/Ejedomsr.

Læs mere

Komplekse tal. Preben Alsholm Juli 2006

Komplekse tal. Preben Alsholm Juli 2006 Komplekse tal Preben Alsholm Juli 006 Talmængder og regneregler for tal. Talmængder Indenfor matematikken optræder der forskellige klasser af tal: Naturlige tal. N er mængden af naturlige tal, ; ; 3; 4;

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010

Helende miljø en udfordring for patientsikkkerhed? Workshop Patientsikkerhed og syge børn fredag den 15. oktober 2010 Helede miljø e udfordrig for patietsikkkerhed? Workshop Patietsikkerhed og syge bør fredag de 15. oktober 2010 Elisabeth Brøgger Jese mag.art. kultursociolog elisabeth.broegger.jese@regioh.dk. Pricipper

Læs mere

Er det en naturlov at aminosyrer er venstredrejede?

Er det en naturlov at aminosyrer er venstredrejede? Er det e aturlov at amiosyrer er vestredrejede? Aja C. Aderse, Axel Bradeburg og Tuomas Multamäki (NORDITA) Stort set samtlige amiosyrer fides i to udgaver (eatiomere) e vestre og e højredrejet (se figur

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

Kommunikation over støjfyldte kanaler

Kommunikation over støjfyldte kanaler Istitut for Matematise Fag wwwmathaaud Kommuiatio over støjfyldte aaler MAT2-projetrapport af G3-7 forårssemestret 2008 Istitut for Matematise Fag Fredri Bajers Vej 7G 9220 Aalborg Øst Telefo 99 40 88

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

INFO@ASYLET-KALUNDBORG.DK WWW.ASYLET-KALUNDBORG.DK

INFO@ASYLET-KALUNDBORG.DK WWW.ASYLET-KALUNDBORG.DK Bør nene i cen trum - en for æl drep jece LUN DE VEJ 1 4400 KA LUND BORG TLF.: 59 51 07 57 INFO@ASYLET-KALUNDBORG.DK WWW.ASYLET-KALUNDBORG.DK Ind holds for teg nelse Side 4 Side 4 Side 5 Side 6 Side 6

Læs mere

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce

Projektstyringsmetoden PRINCE2 som grundlag for opfyldelse af modenhedskrav PRINCE2 is a Trade Mark of the Office of Government Commerce Projektstyrigsmetode PRINCE2 som grudlag for opfyldelse af modehedskrav PRINCE2 is a Trade Mark of the Office of Govermet Commerce som beskrevet i Modehed i it-baserede forretigsprojekter, Modeller til

Læs mere

MAG SYSTEM. Gulvrengøring

MAG SYSTEM. Gulvrengøring DK MAG SYSTEM Gulvregørig Mag system Kocept E fremfører for alt. Det er helt yt: Ved Mag-systemet passer e fremfører til alle moptyper. Således ka de optimale arbejdsbredde, tekstilkvalitet og regørigsmetode

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

De Ny gam le mo bi li serer

De Ny gam le mo bi li serer De Ny gam le mo bi li serer Af Knud Ra mi an Hvis kært barn har man ge navne - må vi el ske al der dom - men. El ler og så hand ler det om præ cis det modsat te. Vi fryg ter og ha der al der dom men og

Læs mere

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer Program 08:30 Idtjekig med kaffe, te og morgebrød 09:00 Idledig ved dirigete Peter Høygaard, parter Devoteam Cosultig A/S 09.10 It-orgaisatioes udfordriger 2009 få mere for midre og spar de rigtige steder

Læs mere

ORDIIUER GENERALFORSAMLING

ORDIIUER GENERALFORSAMLING Grundejerfrengen 18 Naesby Strand Til grundejerfrengens medlemmer; N^sby Strand, den 8. juli 2012. Hermed dkaldes til RIIUR GNRALFRSAMLING Lrdag den 28. juli 2012 kl. 16.00 i teltet a Grassgangen 11. Husk

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN

ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN ALLE BØRN HAR RETTIGHEDER DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG UNGE FORTÆLLER OM AT VÆRE INDLAGT I PSYKIATRIEN DET ER BARE ALMINDELIGE MENNESKER, DER HAR EN SÅRBARHED BØRN OG

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Administartive oplysninger.

Administartive oplysninger. DGU r. Stamoplysiger LOOP Nr. Lokal betegelse Matrikkel Nr.: X koordiat Y Koordiat Z kote. 98.853 3.21.03.01 G1-1 6a/7c, Tåig by 552020,95 6207170,19 66,58 T Admiistartive oplysiger. koordiat oplysiger

Læs mere

BRANDBEKÆMPELSE OG KRÆFTRISIKO

BRANDBEKÆMPELSE OG KRÆFTRISIKO BRANDBEKÆMPELSE OG KRÆFTRISIKO Rapport fra Videskoferece på Christiasborg 22. jauar 2013 1 Bradbekæmpelse og kræftrisiko bygger på idlæg og diskussioer på koferece, afholdt på Christiasborg 22. jauar 2013.

Læs mere

Med serien Super let PS kan børn allerede fra 6 år få succes med deres første

Med serien Super let PS kan børn allerede fra 6 år få succes med deres første Superbør er super lette bøger til legelæsig og læsetræig allerede fra 5 år, det vil sige til det sidste år i børehave og til bh.kl. 1. klasse. Børee får her et tilbud på gode oplevelser, mage samtaleemer

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Uderøgele af forældre brugerilfredhed med dagilbud i kommue Sep. 2013 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommue, om de pørgmål,

Læs mere

Vold på arbejdspladsen. Forebyggelse

Vold på arbejdspladsen. Forebyggelse F O A f a g o g a r b e j d e Vold på arbejdspladse Forebyggelse Idhold Et godt forebyggede arbejde Trivsel Faglighed Ledelse Brugeriddragelse Fællesskab Tekiske og fysiske forhold E løbede proces E positiv

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Ds ese Uestet Sde sde Stlg pøe pøe, /, / og 3/, Kusus ys Kusus. //4 Vghed: 4 te lle hjælpedle: Ige hjælpedle "Vægtg": Beselse bedøes so e helhed. Alle s sl begudes ed de det e get. Alle elleegge sl eges.

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Li vets blan de de bol scher

Li vets blan de de bol scher Knud Ra mia n s op læg på FU AM's marts mø de Li vets blan de de bol scher Tit len Li vets blan de de bol scher er et bi lle de af li vets kva li te ter. Dem har vi vist ledt ef ter lige si den Adam og

Læs mere

02118.00. Afgørelser - Reg. nr.: 02118.00. Fredningen vedrører: Ramsing Kirke. Domme. Taksatio ns kom miss io nen.

02118.00. Afgørelser - Reg. nr.: 02118.00. Fredningen vedrører: Ramsing Kirke. Domme. Taksatio ns kom miss io nen. 02118.00 Afgørelser - Reg. nr.: 02118.00 Fredningen vedrører: Ramsing Kirke Domme Taksatio ns kom miss io nen Naturklagenævnet Overfredningsnævnet Fredningsnævnet 15-02-1954 Kendelser Deklarationer FREDNINGSNÆVNET>

Læs mere

Gravhunde. Gravhunde. Dansk Kennel Klub Gravhunde Atelier. Dansk Kennel Klub. Racehunde i Danmark

Gravhunde. Gravhunde. Dansk Kennel Klub Gravhunde Atelier. Dansk Kennel Klub. Racehunde i Danmark Dansk Kennel Klub Gravhunde Gravhunde Gravhunde Gravhunde er en halv hund høj, en hel hund lang og to hunde værd. De er små lavbenede, charmerende, intelligente, modige og yderst selvstændige individualister,

Læs mere

Er det din egen skyld, at du bli ver ramt af stress?

Er det din egen skyld, at du bli ver ramt af stress? Er det din egen skyld, at du bli ver ramt af stress? bog ud drag AF DORTE TOU DAL VIFTRUP, PH.D. OG AU TO RI SE RET PSY KO LOG 1. juni 2015 14:34 Men ne sker, som er sy ge meld te med stress og de pres

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv

LAMINATGULV KOLLEKTION 2012 2013....det brugervenlige gulv LAMINATGULV KOLLEKTION 2012 2013...det brugervelige gulv Smart på mage......forskellige måder Lami art Black & Hype Der fides æppe oget gulv, der sætter brugere mere i fokus ed lamiatgulve fra Tarkett.

Læs mere

Softwaretest når det er bedst 2009

Softwaretest når det er bedst 2009 Tekologisk Istitut i samarbejde med softwaretest.dk Softwaretest år det er bedst 2009 8. o g 9. J U N I 2 0 0 9 T e k o l o g i s k I s t i t u t T a a s t r u p Succes med itegrerig af test i SCRUM og

Læs mere

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed

DIÆTISTEN FOKUS. Besparelser i Region Midt angriber kliniske diætisters faglighed Nr. 135. Jui 2015. 23. årgag DIÆTISTEN FOKUS Erærigsidsats ka spare milliarder - Vi har spurgt politikere, hvorda de ser på erærigsrelaterede problemer som overvægt og udererærig Besparelser i Regio Midt

Læs mere

Elementær Matematik. Differentialregning

Elementær Matematik. Differentialregning Eleetær Mtetik Dieretilrei Ole Witt-Hse Køe Gsiu 8 Idold Idold... Kp. Græseværdi o kotiuitet.... Græseværdi.... Rei ed ræseværdier...3. Græseværdier ed uedeli...5. Kotiuitet...5. Sætier o kotiuerte uktioer...6

Læs mere

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag.

Projekt 8.2 Slaget ved Trafalgar-Nelsons og Villeneuves strategier. Matematisk modellering af et af verdenshistoriens store slag. Projekt 8.2 Slaget ved Trafalgar-Nelsos og Villeeuves strategier. Matematisk modellerig af et af verdeshistories store slag. Om de matematiske metode Vi vil illustrere de matematiske metode, ved at vise

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere