De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

Størrelse: px
Starte visningen fra side:

Download "De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation."

Transkript

1 De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă y, z P M : x ă y og y ă z ñ x ă z Symbolere ą, ď og ě bruges som valigt. Defiitio 3.2 (Største/midste elemet). Lad A Ă M, hvor pm, ăq er e ordet mægde. Hvis s P M opfylder at s P A og a P A ñ a ď s, så kaldes s A s største elemet. Midste elemet defieres tilsvarede. Sætig 3.3 (Etydighed af største/midste elemet). E delmægde A Ă M, hvor pm, ăq er e ordet mægde, har højst ét største (midste) elemet. Bevis. Bevis det selv. Defiitio 3.5 (Øvre/edre græse). Lad A Ă M, hvor pm, ăq er e ordet mægde, og lad b P M. P A: a ď b, så kaldes b e øvre græse for A. Nedre græse defieres tilsvarede. Se Sætig 3.6 og 3.7 for forskellige formuleriger af egeskabe og des egatio. Defiitio 3.8 (Begræsethed). Lad A Ă M, hvor pm, ăq er e ordet mægde. A siges at være opadtil begræset, hvis A har e øvre græse, tilsvarede med edadtil begræset. A siges at være begræset, hvis A er opadtil og edadtil begræset. Eksempel. H er begræset. Defiitio 3.9 (midste øvre græse/største edre græse). Lad A Ă M, hvor pm, ăq er e ordet mægde og b P M. Så kaldes b e midste øvre græse hvis b er e øvre græse for A og hvis c er e øvre græse for A, så er b ď c. Største edre græse defieres tilsvarede. Se Sætig 3.10 og 3.11 for forskellige formuleriger af egeskabe. Da e midste øvre græse for e mægde A specielt er midste elemet i mægde af øvre græser for A, giver Sætig 3.3, at der højst er é midste øvre græse. Etydighede giver aledig til følgede: 1

2 Defiitio 3.14 (supremum, ifimum). De største edre græse b (midste øvre græse c) for e mægde A kaldes for A s supremum (ifimum) og vi skriver: b sup A pc if Aq. Se Korollar 3.15 for sammehæge mellem supremum og ifimum. De reelle tal Defiitio 1.1 (Legeme). pk, `, q kaldes et legeme s, t P K : r ` s P K (1) r s P K (2) r ` s s ` r (3) r s s r (4) r ` ps ` tq pr ` sq ` t (5) r ps tq pr sq t (6) r ps ` tq rs ` rt (7) D0, 1 P K@r P K : r ` 0 r (8) 1 r r P KDv P K : r ` v 0 pv rq P Kzt0uDw P K : r w 1 pw r 1 q (11) Defiitio (Ordet legeme). pk, `,, ăq kaldes et ordet legeme såfremt pk, `, q er et legeme pk, ăq er e ordet s, t P K : r ă s ñ r ` t ă s ` t (12) t ą 0 og r ă s ñ tr ă ts (13) Defiitio 3.4 (De reelle tal). Et ordet legeme pk, `,, ăq, som opfylder, at ehver ikke-tom, opadtil begræset delmægde A Ă K har e midste øvre græse (også kaldet supremumsegeskabe), kaldes et eksemplar af de reelle tal og vi skriver R i stedet for K. 2

3 Formulerige et eksemplar af dækker over, at de reelle tal ka kostrueres på flere forskellige måder, me ma ka vise, at resultatere i alle tilfælde er idetiske i e passede matematisk forstad. Vi vil (i hvert fald i første omgag) ikke kostruere de reelle tal, me blot atage, at vi har et eksemplar af de reelle tal til rådighed og se, hvad vi herudfra ka kokludere. Et emt eksempel er følgede sætig. Sætig 3.13 (Ifimum-egeskabe). Ehver ikke-tom, edadtil begræset delmægde af R har e største edre græse. For at vise dette, skal vi bruge følgede resultat 1, som er godt at have i adre sammehæge. Propositio Lad pk, `,, ăq være et ordet legeme, r, s P K. Så er Specielt er r ă 0 hvis og ku hvis r ą 0. r ă s ô s r ą 0 ô r ą s. Bevis. Vha. getage brug af (12) med t hhv. lig med r, s og s ` t fås r ă s ñ 0 r r ă s r ñ s 0 s ă s r s r ñ r s ` r ` s ă r ` r ` s s. Sidste udsag fås blot ved at sætte s 0. Bevis for Sætig Lad A Ă R være e ikke-tom, edadtil begræset delmægde. Defiér mægde A t a a P Au. Da A er ikke-tom, er A det også. Lad c være e edre græse for A, P A: c ď a, som jf. Propositio 3.19 er det samme som P A: c ě P A: c ě b, som er det samme som at c er e øvre græse for A. Vi ser altså, at c er e øvre græse for A hvis og ku hvis c er e edre græse for A. Da A er edadtil begræset, er A altså opadtil begræset, og jf. supremumsegeskabe (se Defiitio 3.4) har A e midste øvre græse supp Aq. Sættes c supp Aq må c altså være e edre græse for A, som jf. Propositio 3.19 må være de største edre græse. 1 E propositio er e lille sætig. Dette ord bruges ikke i boge, hvor alle resultater, store som små, ete kaldes for sætig, lemma eller korollar. 3

4 Arkimedes pricip Sætig 3.16 (Arkimedes pricip). For ethvert r P R eksisterer et P N så ą r. Bevis. Vi vil beytte os af et modstridsbevis (også kaldet et idirekte bevis). Da 1 P R og s, t P R ñ s ` t P R, er det klart, at R ideholder (e kopi af) de aturlige tal N. For at å til e modstrid, begyder vi med at egere udsaget i sætige. Atag altså P RD P N: ą r ô Dr P R@ P N: ď r, eller sagt med ord: N er opadtil begræset (af det r, hvis eksistes påstås), og a sup N eksisterer P N : ď a. Da P N ñ ` 1 P N har vi også at eller (ved brug af P N: ` 1 ď P N: ď a 1, som altså er udsaget, at a 1 er e øvre græse for N, i modstrid med, at a ą a 1 er de midste øvre græse. Korollar For ethvert positivt, reelt tal r ą 0 eksisterer et P N, så 1 ă r. Bevis. Da r ą 0, er 1 r P R. Vælg P N så 1 r er vi færdige. ă vha. Arkimedes pricip. Da 1 r ă ô 1 ă r, Korollar Ethvert åbet iterval I sa, br ideholder uedeligt mage ratioelle tal. I opgave 76 skal I selv vise, at I også ideholder uedeligt mage irratioelle tal. Det viser sig faktisk, at der i e matematisk præcis forstad er lagt flere irratioelle tal ed ratioelle tal, eksempelvis i itervallet I, me dette resultat ligger udefor kursets mål 2. Bevis. Beviset består af tre dele. (i) Vi viser først, at hvis a ą 0, så ideholder sa, br midst ét ratioelt tal. Atag derfor, at a ą 0. Da b a ą 0, giver Korollar 3.17 eksistese af P N så 1 ă b a. Arkimedes pricip giver eksistese af et m P N så a ă m ô a ă m. Til æste sessio skal I selv vise Sætig 1.11, som siger, at ehver ikke-tom delmægde af N ideholder et midste elemet (opgave 18). Sæt u m mitm P N a ă mu, dvs. m ą a og m 1 ď a. Nu er a ă m m 1 og vi har altså, at c m P sa, br X Q. 2 Her er et lille ordspil for de idviede... ` 1 ď a ` 1 ă a ` pb aq b 4

5 (ii) Vi viser u, at ethvert iterval ideholder midst ét ratioelt tal. Hvis a ď 0, så eksisterer jf. Arkimedes pricip et ą a, så a 1 a ` ą 0. Sætter vi b 1 b `, ved vi fra (i) at sa 1, b 1 r ideholder midst ét ratioelt tal c 1 P sa 1, b 1 r X Q. Me så er c c 1 P sa, br X Q. (iii) Vi afslutter u argumetet på følgede måde: Lad c 1 c P sa, br X Q. Vi ka u vha. (ii) vælge c 2 P sa, c 1 r X Q Ă sa, br X Q og iterativt c i`1 P sa, c i r X Q Ă sa, br X Q. Dvs. for ethvert i P N har vi et c i P sa, br X Q, og sa, br ideholder altså uedeligt mage ratioelle tal. Eksistes af? 2 Til æste sessio skal I selv overbevise jer om, at? 2 ikke er et ratioelt tal. Vi vil u vise, at der imidlertid i R eksisterer et tal, som fortjeer avet? 2. Sætig Der eksisterer et positivt, reelt tal x, så x 2 2. Bevis. Beviset går ud på at vise, at x sup A, hvor A ta P R a 2 ď 2u, eksisterer og opfylder x ą 0 og x 2 2. Først etableres eksistese af x: (i) A er ikke-tom og opadtil begræset: Da ď 2 har vi 1 P A og at 2 er e øvre græse følger af opgave 67, som I skal løse seere i dag. (ii) Vi har at 1 ď x ď 2: Da 1 P A og x sup A gælder første ulighed, og da 2 er e øvre græse for A følger ade ulighed. (iii) Vi har ikke, at x 2 ă 2: Atag, at x 2 ă 2. Så er ε 2 x 2 ą 0, og (ii) giver, at ε ď 1. Vælg u et δ P R så 0 ă δ ă ε ď 1. Sæt r x ` δ. Så er 5 5 r 2 px ` δq 2 x 2 ` 2xδ ` δ 2 x 2 ` p2x ` δqδ. Me da x ď 2 og δ ď 1 5 ď 1 er 2x ` δ ď 5 og r 2 ď x 2 ` 5δ ă x 2 ` ε 2, og vi har altså r P A samtidig med at r ą x sup A, e modstrid. (iv) Vi har ikke, at x 2 ą 2: Atag, at x 2 ą 2. Så er ε x 2 2 ą 0 og (ii) giver, at ε ď 2. Sæt u s x ε ą 0. Hvis vi for e emheds skyld skriver δ ε, så er 4 4 s 2 px δq 2 x 2 2xδ ` δ 2 ą x 2 2xδ ě x 2 4δ x 2 ε 2 (14) At s er e øvre græse følger u af (14) samt opgave 67. Me dette er i modstrid med, at x er e midste øvre græse. 5

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) : Uge 37 opgaver Opgave Svar : a) Starter med at defiere sup (M) og if (M) : Kigge u på side 3 i kompedie og aveder aksiom (.3) Kotiuitetsaksiomet A = x i x 2 < 2 Note til mig selv : Har søgt på ordet (iequalities)

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Udtrykkelige mængder og Cantorrækker

Udtrykkelige mængder og Cantorrækker Udtrykkelige mægder og Catorrækker Expressible sets ad Cator series Matematisk speciale Simo Bruo Aderse 20303870 Vejleder: Simo Kristese Istitut for Matematik Aarhus Uiversitet 208 Abstract This thesis

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar Noter om Kombiatori, Kirste Roseilde, februar 008 1 Kombiatori Disse oter itroducerer ogle cetrale metoder som ofte beyttes i ombiatoriopgaver, og ræver et grudlæggede edsab til ombiatori (se fx Kombiatori

Læs mere

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G F O R E L Æ S N I N G S N O T E R T I L M Å L T E O R I O G S A N D S Y N L I G H E D S T E O R I 1. 1 S V E N D E R I K G R A V E R S E N A U G U S T 2 0 0 5 I N S T I T U T F O R M A T E M A T I S K

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen Idledig. De modere sadsylighedsteori, hvis aksiomatiske basis blev formuleret af russere A.N. Kolmogorov i 1933 i boge Grudbegriffe der Wahrscheilichkeitrechug, er bygget op omkrig et tripel ofte beteget

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

1 Punktmængdetopologi. metriske rum, fuldstændighed

1 Punktmængdetopologi. metriske rum, fuldstændighed Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 23. november 2015 1 Punktmængdetopologi I algebra beskæftiger man sig bl.a. med abstrakte strukturer, hvori forskellige regneoperationer

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( )

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( ) Opgve Vi skl bestemme de tlpr (, for hvilke række b cos = er koverget. Først beytter vi divergeskriteriet (sætig 2..4) til t kræve t leddee må gå mod ul for gåede mod uedelig. Dette giver os t = b cos()

Læs mere

Program. Middelværdi af Y = t(x ) Transformationssætningen

Program. Middelværdi af Y = t(x ) Transformationssætningen Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige

Læs mere

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; mz@ghg.dk Idholdsfortegelse FUNKTIONSBEGREBET...

Læs mere

Bachelorprojekt for BSc-graden i matematik

Bachelorprojekt for BSc-graden i matematik D E T N A T U R V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt for BSc-grade i matematik Mikkel Abrahamse & Sue Precht Reeh Ekstremal grafteori Vejleder:

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

Punktmængdetopologi, metriske rum, fuldstændighed. Morten Grud Rasmussen 17. november 2017

Punktmængdetopologi, metriske rum, fuldstændighed. Morten Grud Rasmussen 17. november 2017 Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 17. november 2017 Indhold 1 Punktmængdetopologi 2 1.1 Topologiske rum................................. 2 1.2 Kontinuitet...................................

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion Modere Fysik 4 Side af 7 Schrödigerligige Forrige to gage: Idførelse af kvatiserigsbegrebet (for lyseergi og for elektroers eergi) samt partikel-bølge-dualitete, hvilket førte til e helt y teori, kvatemekaikke

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset

Læs mere

Projekt 9.10 St. Petersborg paradokset

Projekt 9.10 St. Petersborg paradokset Hvad er matematik? ISBN 978877066879 Projekt 9.0 St. Petersborg paradokset. De store tals lov & viderchacer I grudboges kapitel 9 omtales de store tals lov, som ka formuleres således: Hvis e spiller i

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2 Projekt 0.3 Galois-legemere GF p - et værktøj til fejlrettede QR-koder Idhold. De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og.... De kommutative, associative og distributive lov

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n!

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n! Mometproblemet. Lad i dette afsit X betege e stokastisk variabel med mometer af ehver orde. Mometfølge (E[X ]) er derfor e vel defieret reel talfølge bestemt ved fordelige, og spørgsmålet om, de omvedt

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Finitisme og Konstruktivisme. 22. November 2010

Finitisme og Konstruktivisme. 22. November 2010 Fiitisme og Kostruktivisme 22. November 2010 Frktler Hilbert Mdelbrot Feigebum Lorez Lorez-Ligigere σ = 10 β = 8/3 ρ =28 Logistisk vækst x -> rx(1-x) Mdelbrots frktl z -> P c (z) = z 2 +c 0-> P c (0) ->P

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags. Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable

Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable Morten Grud Rasmussen 1. marts 2016 1 Taylors Sætning for funktioner af én variabel Sætning 1.1 (Taylors Sætning med restled).

Læs mere

August 2012 AKTIVERING. for dig under 30 F O A S A R B E J D S L Ø S H E D S K A S S E

August 2012 AKTIVERING. for dig under 30 F O A S A R B E J D S L Ø S H E D S K A S S E F O A S A R B E J D S L Ø S H E D S K A S S E August 2012 AKTIVERING for dig uder 30 INDHOLD 1. Du er uder 25 år er ude uddaelse og har ige bør side 4 2. Du er uder 25 år er ude uddaelse og har bør side

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala Statistik for biologer 005-6, modul 5: Sadsylighedsfordeliger for kotiuerte data på iterval/ratioskala M6, slide Gægse matematiske sadsylighedsfordeliger: Diskrete data: De positive biomialfordelig Poisso-fordelige

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; m@ghg.dk Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Nogle Asymptotiske Resultater. Jens Ledet Jensen Matematisk Institut, Aarhus Universitet. 1 Indledning 1

Nogle Asymptotiske Resultater. Jens Ledet Jensen Matematisk Institut, Aarhus Universitet. 1 Indledning 1 Nogle Asymptotiske Resultater Jes Ledet Jese Matematisk Istitut, Aarhus Uiversitet Idhold Idhold i Idledig 2 Resultater i et geerelt set-up 7 2. Eksistes af et kosistet estimat............... 7 2.2 Asymptotisk

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Implicit givne og inverse funktioner

Implicit givne og inverse funktioner Implicit givne og inverse funktioner Morten Grud Rasmussen 1 11. april 2016 1 Implicit givne funktioner I lineær algebra har vi lært meget om at løse lineære ligningsystemer og om strukturen af løsningsmængden.

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE

H. TORNEHA VE FOREL$SNINGSNOTER MATEMATISK ANALYSE H. TORNEHA VE FOREL$SNINGSNOTER I MATEMATISK ANALYSE Kursus ma1;.ematik 1 f'or f rste ars studerede uder..k behavs Ui versi teta..jll8. tema ti skatucvideskabelige f'akultet~ samt ~or aktuarog stat~t~studerede.

Læs mere

Regularitetsbetingelserne i simple modeller

Regularitetsbetingelserne i simple modeller Kapitel 7 Regularitetsbetigelsere i simple modeller I dette kapitel vil vi udersøge forskellige modeller med uafhægige, idetisk fordelte variable, rækkede fra det trivielle til det gaske geerelle. Målet

Læs mere