Analyse 30. januar 2015

Størrelse: px
Starte visningen fra side:

Download "Analyse 30. januar 2015"

Transkript

1 30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de potentielt negtive konsekvenser ved stigende ulighed i et smfund. Indkomstforskellene er efter interntionl stndrd reltivt små i Dnmrk. Men uligheden i indkomstniveu, mål ved Gini-koeffiienten, er steget siden I nottet elyses årsgerne til denne stigning i indkomstforskellene. Desuden redegøres for, hvordn Gini-koeffiienten og ændringerne i den skl forstås. Hovedkonklusioner Indkomstforskellene i Dnmrk, målt ved Gini-koeffiienten, steg fr. 0,24 i 2003 til omkring 0,27 i Fr 2008 fldt indkomstforskellene igen, l.. som følge f lvkonjunkturen. De stigende indkomstforskelle fspejler, t de 10 pt. højeste indkomster tjener en større ndel f den smlede indkomstmsse. De 10 pt. som hvert år ligger øverst i indkomstfordelingen, tjente således. 22 pt. f de smlede ækvivlerede disponile indkomster i Det vr. 2 pt. point mere end i De 10 pt. højeste indkomster etlte dog smtidig. 27 pt. f sktterne. Gruppens ndel f esktningen er steget med 1,3 pt. point. ngt hovedprten f stigningen i Gini-koeffiienten knp 80 pt. skyldes, t de 10 pt. rigeste hr fået en større ndel f den smlede indkomst. Denne udvikling er modsvret f et fld i indkomstndelen især i den lve ende f indkomstfordelingen, men dette hr mindre etydning for ændringerne i Gini-koeffiienten. Udviklingen i Gini-koeffiienten fspejler således i høj grd udviklingen i indkomstndelen for de rigeste personer i Dnmrk og i mindre grd hvordn udviklingen hr været lndt personer tilhørende fx lvindkomstgrupperne, der ellers typisk er i fokus, når indkomstfordeling diskuteres. Indkomstndelen stiger således med 0,17 point, hvis indkomsten øges med 1 pt. i 10. deil. Det er. 5 gnge mere end ved en isoleret stigning i indkomsten på 1 pt. i første deil. Frem til 2008 skyldtes stigningen i ndelen f indkomsten for de 10 pt. rigeste primært stigninger i deres ndel f kpitlindkomsterne smt, i

2 mindre grd, lvere esktning for denne gruppe. Efter krisen i 2008 fldt kpitlindkomsterne, hvilket trk i retning f lvere indkomstndel for de 10 pt. rigeste. Men dette lev mere end opvejet f en stigning i den ndel f lønnen som gik til de rigeste, således t denne gruppe smlet set oplevede en svg stigning i indkomstndelen efter I interntionl smmenhæng er Dnmrk stdigvæk kendetegnet ved t hve en reltiv lve indkomstforskelle. Smtidig er Dnmrk dog et f de lnde, hvor indkomstforskellene målt ved Gini-koeffiienten er steget mest siden 2003, når OECDs opgørelser lægges til grund. Den ndel f den smlede ntionle indkomst, der tilflder de 10 pt. rigeste, er dog fldet siden Fr strten f 1980 erne hr ndelen været nogenlunde stil, og stigningen i de senere år er således ikke udtryk for et mrknt skifte i indkomstforskellene i Dnmrk, hvis der smmenlignes med udviklingen i fx Storritnnien, USA og Sverige. Gini-koeffiienten er således særligt følsom over for udviklingen i indkomst lndt de rigeste, mens en tilsvrende reltiv indkomstfremgng lvt i indkomstfordelingen isoleret set hr lngt mindre effekt. Kontkt 1 Forskningshef Kristin Thor Jkosen Tlf E-mil 1 Jko Hld er kommet med etydelige idrg til den tekniske del f ppiret. 2

3 1. Bggrund Indkomstforskellene i efolkningen måles ofte med Gini-koeffiienten. Koeffiienten måler indkomstforskellene som ndel f den mksimle ulighed, hvor hele indkomsten tilflder én person. Hvis koeffiienten er tæt på 1, etyder det, t l indkomst i lndet går til én person, mens en koeffiient på 0 etyder, t lle personer hr den smme indkomst. Gini-koeffiienten er steget fr 0,22 i 1995 til. 0,27 i 2012, jf. figur 1. Fr omkring 2003 og frem til 2008 steg Gini-koeffiienten med 3 pt. point. Vores skøn for stigningen i 00 erne er en nelse højere end skønnet fr Økonomi- og Indenrigsministeriet, men de to kurver udvikler sig nogenlunde prllelt. OECD og Eurostt offentliggør også skøn for Gini-koeffiienten, som ligeledes viser, t der er sket en stigning frem til Fmiliens smlede indkomst efter skt og renteudgifter og inklusiv overførsler nvendes som indkomstegre i vores opgørelse f Gini-koeffiienten for Dnmrk. Indkomsten er herefter fordelt ligeligt på fmiliens medlemmer, og der er tget højde for stordriftsfordele i fmiliens forrug. Når der tges højde for skt og overførsler, liver Gini-koeffiienten mrknt lvere, end hvis den eregnes med udgngspunkt i personlig ruttoindkomst i form f løn og nettooverskud fr egen virksomhed. Således vr Gini-koeffiienten målt lene ved ruttolønindkomst på. 0,5 i 2012, mens den som nævnt er 0,27, hvis lle overførsler og sktteetlinger mv. inkluderes. 2 Der er imidlertid dtrud i Eurostts opgørelser for Dnmrk. 3

4 Figur 1: Gini-koeffiienten for den ækvivlerede disponile indkomst, ,3 Krks skøn 0,25 Økonomi- og Indenrigsministeriets opgørelse 0,2 0,15 0,1 Anm.: Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. De ækvivlerede indkomster enyttes, d det er hensigtsmæssigt t korrigere indkomsterne for forskelle i fmiliernes størrelse og smmensætning. De disponile indkomster er derfor korrigeret med ækvivlensfktoren, der grundlæggende er et mål for, hvor mnge enlige voksne en fmilie indkomstmæssigt svrer til. Ækvivlensfktoren eregnes som ntl voksne + ntl ørn 0,6, som svrer til den ækvivleringsskl som Finnsministeriet enytter. Indkomstforskellene målt ved Gini-koeffiienten er stdig reltiv lve i Dnmrk smmenlignet med ndre europæiske lnde, jf. tel 1. Således vr det kun Islnd, Slovenien og Norge, der i 2010 hvde en lvere Gini-koeffiient end Dnmrk, når OECD s opgørelse lægges til grund. 3 Dnmrk hr oplevet en stigning i Gini-koeffiienten fr midten f hlvfemserne og frem til Således steg Gini-koeffiienten i Dnmrk ifølge OECD med knp 4 pt. point fr 1995 til 2011 svrende til en stigning på. 18 pt. Kun Sverige og Finlnd hr hft en lignende udvikling. Gini-koeffiienten er steget mest i de lnde, der hvde reltiv lve Ginikoeffiienter tilge i midten f hlvfemserne. En række ndre lnde derilndt Tysklnd og Frnkrig hr også oplevet en stigning i Gini-koeffiienten fr 1995 til 2010, mens lnde som Ungrn, Hollnd og Grækenlnd efter OECDs opgørelser hr oplevet et lille fld. 3 OECDs opgørelse er vlgt i smmenligningen, d denne er seret på et lngt større udsnit f den dnske efolkning end Eurostts opgørelse og i højere grd seres på registeroplysninger. 4

5 Tel 1: Gini-koeffiient for udvlgte europæiske lnde smt udvikling over tid, Ændring siden Gini 2011 Asolut ændring Pt.vis ændring Slovenien 0,245 Norge 0,250 0,01 3,2 Islnd 0,251 Dnmrk 0,253 0,04 17,7 Tjekkiet 0,256 0,00-0,4 Slovkiet 0,261 Belgien 1 0,264 Finlnd 0,265 0,05 18,3 Østrig 1 0,269 Sverige 0,273 0,06 29,4 uxemorg 0,276 0,02 6,6 Hollnd 2 0,278-0,02-7,1 Shweiz 0,289 Ungrn 2 0,290 0,00-1,2 Tysklnd 0,293 0,03 9,2 Irlnd 0,302 Polen 0,304 Frnkrig 0,309 0,03 10,8 Itlien 0,321 0,00-1,5 Estlnd 0,323 Grækenlnd 0,335-0,01-2,9 Spnien 0,338 Storritnnien 1 0,341 0,00 1,2 Portugl 0,341 Anm.: OECD Inome Distriution dtse, Opgjort ved disponiel indkomst efter skt og overførsler. Ungrn, Irlnd og Shweitz er repræsenteret med 2009-tl. Tllet for er seret på tl fr 1995 i de tilfælde, hvor der eksisterer opgørelser for dette år. I de ndre tilfælde eder tle om tl fr enten 1994 eller : Bseret på tl fr : Bseret på tl fr Indkomstsktter og overførsler hr således en omfordelende effekt, der reduerer den smlede Gini-koeffiient. Smtidig påvirker sktter og overførsler dfærden, hvilket også påvirker indkomstniveu og fordeling. Desuden hr de offentlige servieudgifter en omfordelende effekt, som dog ikke indgår i eregningerne her. Ifølge OECD idrger den reltivt høje esktning f dnske indkomster og en ret lv lønspredning før skt til, t indkomstforskellene er reltivt egrænsede set i et europæisk perspektiv se fx Inome inequlity nd growth: The role of txes nd trnsfers, OECD Eonomis Deprtment Poliy Notes, No. 9. Jnury Hertil kommer t en stor del f de ikke-eskæftigede i Dnmrk modtger overførsler, som smtidig hr et reltivt højt niveu i interntionl målestok. 2. Gini-koeffiienten hvd hr drevet stigningen fr 2003 til 2012? Fr 2003 til 2012 er den ndel f indkomsterne, som tilflder de 10 pt. med de højeste indtægter, forøget med knp 2 pt.point, jf. figur 2. Modstykket hertil er, t personer længere nede i indkomstfordelingen hr oplevet et fld i deres indkomstndel. Således udgjorde den smlede indkomst for de 10 pt. med de lveste indkomster. 3,4 pt. f den 5

6 smlede indkomstmsse i 2012, mod. 4 pt. i Denne gruppes indkomstndel er dermed fldet med 0,6 pt. point siden 2003 svrende til et fld på. 15 pt.. Figur 2: Andel f den smlede indkomst, der tilfldt de enkelte indkomstdeiler, D1 D2 D3 D4 D5 D6 D7 D8 D9 D Anm.: Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. Befolkningen er stillet op efter deres indkomstniveu. D1 er første deil, dvs. de 10 pt. med de lveste indkomster. D2 er de næste 10 pt. f efolkningen, der hr indkomster over D1 men mindre end resten f efolkningen osv. De 10 pt. med de højeste disponile indkomster tjente godt 22 pt. f indkomsterne efter skt, overførsler mv. Denne gruppe stod smtidig for. 27 pt. f den smlede indkomstsktteetling. Udviklingen i Gini-koeffiienten fhænger grundlæggende f, hvordn de forskellige gruppers indkomstndele udvikler sig. Og hvis en gruppe går frem, så må ndre gruppers indkomstndel gå tilge. Det er som nævnt særligt 10. deil, der gik frem i indkomstndel fr 2003 til 2012, men 8. og 9. deil gik også lidt frem. Den smlede ndel f indkomstmssen, som er flyttet op til disse grupper er på 2,3 pt. Hvis denne stigning i gennemsnit hvde sit modstykke i et fld i 4. og især 5. deil, ville Ginikoeffiienten netop være steget med 2,3 pt. Men stigningen i Gini-koeffiienten er imidlertid på 3,3 pt. dvs. en fktor 1,4 større. Det fspejler, t de deiler, der hr mistet indkomstndele, i gennemsnit ligger længere nede i indkomstfordelingen. Der hr historisk været en tæt smmenhæng mellem udviklingen i indkomstndelen for de 10 pt. rigeste i efolkningen og ændringer i Gini-koeffiienten jf. figur 3. Beregningerne i dette nott peger på, t knp 80 pt. f stigningen i koeffiienten fr 2003 til 2012 er en konsekvens f omfordeling i retning f 10. deil de 10 pt. med størst indkomst. Denne stigning i indkomstndelen for de 10 pt. rigeste personer i Dnmrk modsvres f et fld i indkomstndelen for indkomstdeil, især de lveste deiler. 4 4 Se ppendiks 2 for formel gennemgng 6

7 Figur 3: Smmenhæng mellem ndelen f den ækvivlerede disponile indkomst pt., der tilflder forskellige indkomstgrupper, og Gini-koeffiienten, , , Top 10 pt.s indkomstndel v. kse Bund 20 pt.s ndel f de øvriges indkomst Gini hj. kse 0,24 0,22 0,2 14 0, , ,14 Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. De 20 pt. lveste indkomster udgør en mindre del f indkomstmssen i dg end i I 1995 udgjorde denne indkomstndel således omkring 11 pt., mens den i dg er på 9 pt. f de smlede indkomster. Dette fld hr også idrget væsentligt til stigningen i Ginikoeffiienten. En stigning i indkomsterne i 1. deil på fx 1 pt. vil lt ndet lige hve meget mindre effekt på Gini-koeffiienten, end en tilsvrende 1 pt. stigning i indkomsterne for de 10 pt. rigeste, jf. figur 4. Indkomstndelen stiger således med 0,17 point, hvis indkomsten øges med 1 pt. i 10. deil. Det er. 5 gnge mere end ved en isoleret stigning i indkomsten på 1 pt. i første deil. Derfor er effekten på Gini-koeffiienten også noget mere følsom over for mervækst i indkomsterne i 10. deil end i 1. deil. Mn skl op over 6. deil, før der er positive effekter på Ginikoeffiienten. Det fspejler, t de personer der ligger højt i indkomstfordelingen tjener den største del f indkomstmssen. 7

8 Figur 4: Ændring i Gini-koeffiient ved 1 pt. stigning i indkomsten for det enkelte indkomstdeil 0,20 0,15 0,10 Ændring i ndel Ændring i Gini 0,05 0,00 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10-0,05-0,10 Anm.: Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. Det ntges i eregningen, t indkomsten øges seprt for hver f de 10 indkomstgrupper ved uændret indkomst i de øvrige grupper. Effekten på Gini-koeffiienten er herefter eregnet med formel 1 i ppendiks. Stigningen i den ndel f den smlede indkomst, der tilflder de 10 pt. rigeste, hr dog været reltiv egrænset i et længere perspektiv. Det er forsøgt illustreret i figur 5. 5 Fr 1970 og frem til midt-80 erne fldt 10. deils indkomstndel fr et højt niveu, hvilket også reduerede Gini-koeffiienten i denne periode. Derefter er ndelen gået lidt op igen, men den ligger lngt under niveuet i I Sverige ligger ndelen en nelse højere end i Dnmrk. I UK er den noget højere, hvilket fspejler, t indkomstndelen for den 10. deil steget krftigt nvnlig gennem 1980 erne. Fktisk vr den 10. deils indkomstndel større i Dnmrk end i UK tilge i Figuren ygger på oplysninger fr The World Top Inomes Dtse. Tllene fviger derfor fr dem, som er præsenteret ovenfor. 8

9 Figur 5: Udviklingen i indkomstndelen, der går til de 10 pt. rigeste personer i lndet, Dnmrk Sverige Storritnnien USA Anm. The World Top Inomes Dtse, 2014 Indtil 1990 er opgørelsen for Storritnnien udelukkende seret på gifte pr og enkelt voksne. Fr 1990 og frem er opgørelsen for lle voksne. Indkomsten er opgjort som indkomst før skt. 3. Dekomponering f udviklingen i indkomstndelen for de 10 pt. rigeste. Fr 2003 til 2012 steg 10. deils ndel f de ækvivlerede disponile indkomster med knp 2 pt. f den smlede indkomstmsse. Stigningen i 10. deils indkomstndel vr størst fr 2003 til 2008, men fortstte i et mere modert tempo efter Udviklingen i 10. deils indkomstndel kn overordnet være en konsekvens f to ting. Den ene er, t fordelingen f de forskellige indkomstkomponenter dvs. løn, overførsler, formueindkomst, overskud f egen virksomhed, netterenteudgifter og sktteetling mv. kn forrykkes, således t 10. deil får en større del f de forskellige indkomstkomponenter eller etler en mindre ndel f sktten. Denne effekt omtles her som fordelingseffekten, fordi effekten knytter sig til, hvordn de forskellige indkomstkomponenter hver især er fordelt på hhv. 10 deil og resten f efolkningen. Den nden effekt knytter sig til, t de forskellige indkomstkomponenter ikke er lige vigtige for de to grupper. Fx udgør formueindkomst en meget større ndel f indkomsten i 10. deil end i resten f efolkningen. Hvis lle deiler oplever en ensrtet, reltivt høj vækst i formueindkomsten, fx som følge f stigende oligpriser, vil det etyde højere indkomstndel for de 10 pt. rigeste, d deres indkomst i højere grd er seret på formue. Denne effekt på indkomstfordelingen kldes en væksteffekt. 9

10 Fr 1995 og frem til 2008 steg løn en nelse mere for resten f efolkning smmenlignet med 10. indkomstdeil, hvilket lt ndet ligetrk i retning f et fld i Gini-koeffiienten jf. figur 6. Dette tilsiger, t fordelingseffekten f lønudviklingen i forhold til den smlede indkomstfordeling hr været egrænset. 6 Det fspejler l.., t flere kom i eskæftigelse, mens det modstte vr tilfældet i kriseperioden. Derimod oplevede den 10. indkomstdeil en stigning i lønindkomsten efter 2008 smmenlignet med den resterende efolkning, hvilket hr medvirket til, t Gini-koeffiienten ikke er fldet mere efter 2008, givet udviklingen i de øvrige indkomstkilder. Det er dog ikke de smme personer der hvert år efinder sig i gruppen med de 10 pt. højeste indkomster. Figur 6: Udviklingen i ækvivleret lønindkomst for de 10 pt. rigeste og resten f efolkningen, = Personer med de 10 pt. højeste disponile indkomster Resten f efolkningen Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. I modsætning til lønindkomsten vr udvikling i formueindkomsten fr 1995 til 2008 medvirkende til, t Gini-koeffiienten steg frem mod Frem til 2004 steg den ækvivlerede formueindkomst i nogenlunde smme tkt for 10. indkomstdeil og resten f efolkningen, jf. figur 7. Men fr 2004 til 2008 steg formueindkomsten mrknt mere for 10. indkomstdeil smmenlignet med resten f efolkningen, hvilket vr stærkt medvirkende til, t 10. indkomstdeil opnåede en højere ndel f den smlede indkomst i Dnmrk. Dette skete primært vi den såkldte væksteffekt, ltså t en stigning i formueindkomsten primært kommer 10. indkomstdeil til gode, d denne indkomstkilde udgør en reltiv større ndel f 10. indkomstdeils smlede indkomst smmenlignet med den øvrige efolkning. Frem til 2007 steg 10. indkomstdeils formueindkomst dog også mere end i resten f efolkningen. Til gengæld fldt den hurtigt igen frem i 2008, så lt i lt er fordelingseffekten fr 2004 til 2008 lille. Modst hr fldet i formueindkomsten for 10. indkomstdeil efter 2007 trukket ned i forhold til udviklingen i Gini-koeffiienten fr 2008 og frem. 6 Se en mere detljeret gennemgng f de to effekter i ppendiks 1. 10

11 Figur 7: Udviklingen i ækvivleret formueindkomst for de 10 pt. rigeste og resten f efolkningen, = Personer med de 10 pt. højeste disponile indkomster Resten f efolkningen Anm. Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. X Smlet set steg de indkomstkomponenter, som fylder meget i 10. deil, krftigt i højkonjunkturen dvs. fr 2003 til Her idrog væksteffekten til t øge 10. deils indkomstndel. De vigtigste idrg vr her stigende således formueindkomst og lvere esktning. For 1. til 9. deil hr væksteffekten redueret indkomstndelen tilsvrende med 1,6 pt., selv om disse grupper også fik gvn f lvere sktteetling og stigende formueindkomster. Årsgen til, t indkomstndelen fldt for gruppen, vr en nedgng i overførselsindkomsterne og krftigt stigende nettorenteudgifter. 11

12 Appendiks 1 - Dekomponering f udvikling i 10. deils og 1-9 deils indkomstndele Vi er interesseret i udviklingen i 10. deils ndel f de smlede indkomster. Denne ndel skrives som i t It / It hvor I er de smlede ækvivlerede indkomster. Der sondres herefter mellem 6 forskellige indkomstkomponenter. Det er løn mv., overførsler, nettooverskud f egen virksomhed, formueindkomst og nettorenteudgifter, smt sktteetlingen som trækkes fr. Indkomsten kn derfor skrives som I n I j, hvor j er et indeks for indkomstkom- j1 ponenter. Herefter kn ændringen i 10. deils indkomstndel dekomponeres på følgende vis: 10 it j, t j, t 1 j, t 1 j, t j, t 1 j, t 1 j, t j, t 1 j, t j, t 1 10 hvor f,t er 10. deils ndel f indkomstkomponent j på tidspunkt t, mens j, t er indkomstkomponent j s ndel f den smlede ækvivlerede indkomst. Udviklingen i 10. deils indkomstndel estår dermed f især to dele: Den første del som repræsenteres f den første prentes viser den ændring i indkomstndelen, som skyldes, t fordelingen f de respektive indkomstelementer er skiftet til eller væk fr 10. deil. Disse ændringer i fordelingen f de forskellige indkomstkomponenter vægtes med den pågældende indkomstkomponents ndel f de smlede ækvivlerede indkomster. Denne første effekt kldes fordelingseffekten i tel 2, fordi den viser idrget fr ændret fordeling f de enkelte indkomstkomponenter. Den nden prentes ngiver ændringen i 10. deils indkomstndel som følge f, t de forskellige indkomstkomponenter hr udvist forskellige vækstrter. Dvs. effekten på indkomstndelen, hvis de forskellige indkomstkomponenter hver især vr fordelt på smme måde på 10. deil og resten f efolkningen. Denne effekt kldes i tellen for væksteffekten. Det sidste led i formlen er en krydseffekt, som i de fleste tilfælde er lille. For de første 9 deiler kn den tilsvrende dekomponering skrives på følgende vis , 1, 1,, 1, 1, 1 1 j, t j t j t j t j t j t j, t j, t 1 j, t j t 19 it j, t j, t D 1 gælder t fordelingseffekten hr smme numeriske størrelse men med modst fortegn. Desuden gælder t summen f vægteffekter og krydseffekter for 10. deil og deil må svre til 0. Resultterne f dekomponeringen på en fordelingseffekt og en væksteffekt f indkomstfordeling fr 2003 til 2012 er vist i ilgstel 1. Det fremgår, t fordelingseffekten kn forklre 80 pt. f den stigning i indkomstndelen, som 10. deil oplevede fr 2003 til Det fspejler l., t den ndel f lønsummen, som gik til 10. deil, lev forøget, hvilket isoleret set øgede 10. deils indkomst med 2,1 pt. f den smlede indkomstmsse. Ændret fordeling f fx formueindkomsten hvde derimod kun hft mrginl etydning for fordelingen, når mn ser på hele perioden fr 2003 til

13 Generelt nedrgte dnskerne deres nettorenteudgifter fr 2003 til 2012, hvilket skl ses i smmenhæng med rentefldet og stigende udredelse f vrielt forrentede lån. For deil fldt nettorenteudgifterne mere end for 10. deil. Det medfører en fordelingseffekt, der øgede indkomstndelen for deil med. 0,5 pt. f den smlede indkomstmsse i perioden. Bilgstel 1: Dekomponering f ændring i indkomstndel på en fordelingseffekt og en væksteffekt, Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. Den stigende indkomstndel til 10. deil hr også trukket i retning f, t denne gruppe står for en større del f den smlede sktteetling. Det forhold, t 10. deil står for en større ndel f sktteetlingen, reduerer således 10. deils indkomstndel med 0,7 pt. f de smlede ækvivlerede indkomster. Det skl dog ses i smmenhæng med, t sktteetlingen fldt i perioden målt som ndel f de smlede ækvivlerede indkomster. Det øger isoleret set indkomsterne for egge grupper. Væksteffekten hr smlet set spillet en mindre rolle for hele perioden C. 20 pt. f stigningen i 10. deils indkomstndel skyldes således en reltiv høj vækst i de indkomstkomponenter, der fylder reltivt mest i den høje ende f indkomstfordelingen. Det dækker over en ret stor effekt i højkonjunkturårene til fordel for 10. deil, og en modstrettet effekt i kriseårene. De indkomstkomponenter, som er vigtigst for 10. deil, steg mest i de gode år det gælder særligt formueindkomsten. Smtidig idrog en reltivt lv vækst i sktteetlingen til t øge 10. deils indkomstndel. Det fremgår, t lønindkomsten er fldet med. 11,4 pt. f den smlede ækvivlerede indkomst i perioden fr 2003 til Smtidig fldt den smlede etlte skt også som ndel f de ækvivlerede indkomster. Desuden er formueindkomst og overskud f egen virksomhed forøget som ndel f de smlede indkomster i perioden, og nettorenteudgifterne er smlet rgt ned. 13

14 Appendiks 2 - Smmenhængen mellem ændringer i indkomstfordeling og Ginikoeffiienten Udviklingen i indkomstfordelingen kn nskueliggøres med orens-kurven, jf. ilgsfigur 1. orens-kurven er opgjort ved t stille efolkningen op efter hvor meget de tjener fr venstre hvor indkomsten er lv mod højre, hvor indkomsten er høj, og herefter opgøre, hvor stor en del f den smlede indkomstmsse, som tilflder de forskellige grupper. Det fremgår fx f figuren, t de 50 pt. f efolkningen, som tjente mindst, smlet tjente 32 pt. f indkomsterne i De 20 pt. med de lveste indkomster tjente. 7 pt. f indkomsterne osv. De stigende indkomstforskelle siden 2003 viser sig ved, t orens-kurven er rykket ned mod højre hjørne. De personer, der hr reltivt lve indkomster, tjener dermed en mindre del f den smlede indkomstmsse i 2012, end de gjorde i Bilgsfigur 1: orenskurven i 2003 og A B =0,1 =0,2 =0,3 d=0,4 e=0,5 f=0,6 g=0,7 h=0,8 i=0,9 1 Anm.: Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. Befolkningen er stillet op efter deres indkomstniveu. er i figuren de 10 pt. med de lveste indkomster og orenskurven måler her, hvor stor en del f de smlede indkomster som denne gruppe tjener. Tilsvrende er de 20 pt. med de lveste indkomster, mens orenskurven Y-ksen her måler hvor stor en del f indkomsten som denne gruppe får. Udviklingen i Gini-koeffiienten fhænger grundlæggende f, hvordn de forskellige gruppers indkomstndele udvikler sig. Hvis en gruppe går frem, så må ndre som nævnt gå tilge egge sider skl med for t forstå effekten på Gini-koeffiienten. Vi ser først på den persongruppe, som ligger mellem de og pt. fttigste i ilgsfigur 1 mrkeret med den første lå søjle i figuren. Det ntges, t indkomsten i denne del f fordelingen redueres med pt. f den smlede indkomstmsse. Desuden ntger vi, t denne ndel i stedet går til den gruppe, der er mellem de og d pt. fttigste mrkeret med den nden lå søjle i figuren. I dette tilfælde kn det vises, t ændringen i den smlede Gini-koeffiient pproksimtivt kn skrives som: G d 1 14

15 Udtrykket viser, t jo større fstnd der er mellem de, der ter indkomstndele, og de der vinder, jo større er effekten på Gini-koeffiienten. Desuden er effekten stort set ufhængig f, hvordn indkomstfordelingen ser ud i forvejen 7. I ilgsfigur1 og hvor indkomstfordelingen er delt op i 10 grupper fgrænser og netop ndet deil D2, mens og d fgrænser fjerde deil D4. Udtrykket inden for prentesen kn her opgøres til 0,3+0,4-0,2+0,1= 0,4. Dvs. hvis 1 pt. f indkomstmssen 1 flyttes fr ndet deil til fjerde deil, så vil Gini-koeffiienten stige med. 0,4 pt. Det er mindre end det elø, der flyttes, fordi fstnden mellem grupperne i indkomstfordelingen er ret lille. Hvis pengene i stedet flyttes til de 10 pt. rigeste vil udtrykket i prentesen svre til 1,6 og d skl her sættes til 0,9 og 1. Det ville etyde, t Gini-koeffiienten i stedet stiger med 1,6 pt. point. Det er. 4 gnge mere end før, og 60 pt. mere end det elø der flyttes. Ændringer i indkomstfordelingen er dermed fhængig f, hvilke indkomstdeiler, der går frem og tilge og særligt fstnden imellem dem. I ilgstel 2 er vist effekten på Gini-koeffiienten, når indkomstndelen flder med 1 pt. f den smlede indkomstmsse i et f de 10 deiler som en funktion f, hvilke f de øvrige deiler som går frem i indkomst. Antg eksempelvis t de 10 pt. lveste indkomster D1 oplever et fld i indkomstndelen på 1 pt.point, som modsvres f en tilsvrende stigning for 2. deil D2. Her øges Gini-koeffiienten kun med 0,2 pt. det fremgår f første søjle, øverst. Hvis pengene løer den nden vej, flder Ginien omvendt også kun med 0,2 søjle 2 øverst. Den lille effekt fspejler t der omfordeles mellem to grupper, der ligger omtrent smme sted i indkomstfordelingen. Hvis indkomstndele flyttes 1. deil op i indkomstfordelingen er effekten ltså. 0,2 på Gini-koeffiienten. Flyttes indkomstndele 2 deiler op er effekten 0,4 og så fremdeles. Hvis indkomstndele flyttes ni deiler fr 1. til 10. er effekten 1,8 pt. på Gini-koeffiienten, dvs. næsten doelt så meget, som den indkomstmsse, der flyttes se første søjle, nederst. Jo mere indkomst, der omfordeles mellem enderne i fordelingen, jo større er effekten dermed på Gini-koeffiienten. Den mksimlt mulige effekt på Gini-koeffiienten, ved t flytte pt. f indkomstmssen, er 2 pt.point 8. Der er forskellige tilfælde, hvor effekten på Gini-koeffiienten numerisk svrer til den ndel f indkomstmssen der flyttes rundt. Det er fx tilfældet, hvis der er en fstnd på. 5 deiler mellem den deil, som får lvere indkomstndel, og den deil der går frem. Det gælder også, hvis mn omfordeler fr de 50 pt., der tjener mest, til de 50 pt., der tjener mindst eller omvendt under forudsætning f, t indkomstfordelingen inden for de to grupper er nogenlunde ens, og t indkomstændringerne er proportionle lle går proentuelt lige meget frem eller tilge. 7 Formlen stiller dog for t være ekskt nogle krv til det indyrdes forhold mellem indkomstfordelingerne inden for de to grupper, men er ret præis, når indkomstfordelingen opdeles i et pssende stort ntl grupper fx deiler, jf. ppendiks. 8 Givet t indkomstforskellene inden for de pågældende grupper opfylder visse krv. 15

16 Bilgstel 2: Effekt på Gini-koeffiient når indkomst på 1 pt. f indkomstmssen flyttes mellem deiler pproksimtivt D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Gennem- Deiler der oplever et fld i indkomstndel på 1 pt. f indkomstmssen snit Deil med fremgng D1 - -0,2-0,4-0,6-0,8-1 -1,2-1,4-1,6-1,8-1,0 D2 0,2 - -0,2-0,4-0,6-0,8-1 -1,2-1,4-1,6-0,8 D3 0,4 0,2 - -0,2-0,4-0,6-0,8-1 -1,2-1,4-0,6 D4 0,6 0,4 0,2 - -0,2-0,4-0,6-0,8-1 -1,2-0,3 D5 0,8 0,6 0,4 0,2 - -0,2-0,4-0,6-0,8-1 -0,1 D6 1 0,8 0,6 0,4 0,2 - -0,2-0,4-0,6-0,8 0,1 D7 1,2 1 0,8 0,6 0,4 0,2 - -0,2-0,4-0,6 0,3 D8 1,4 1,2 1 0,8 0,6 0,4 0,2 - -0,2-0,4 0,6 D9 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 - -0,2 0,8 D10 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2-1,0 Gennemsnit 1,0 0,8 0,6 0,3 0,1-0,1-0,3-0,6-0,8-1,0 Anm. Tel viser effekt hvis et f deilerne i første række mister en ndel på 1 pt. f mssen, og hele denne effekt modgås f en stigning i en f de deiler, der er vist i første søjle.

17 I ilgsfigur 2 er vist en dekomponering f stigningen i Ginikoeffiienten fr 2003 til 2012 med fsæt i de nævnte prinipper. Dekomponeringen kræver, t mn for hver deil, der er gået ned i indkomstndele, udpeger den gruppe/deil, der er gået frem. Det ntges konkret, t en deil med nedgng hr sit modstykke i de nærmest eliggende deiler, som hr fremgng i indkomstndelen, smt t eregningen sker trinvist med 1. deil først, derefter 2. deil osv. Modstykket til nedgng i indkomstndelen i første deil fr 2003 til 2012, er således en fremgng i først 8. deil, og når det er fyldt op her, så 9. deil og herefter 10. deil. Bidrget til stigningen i Gini-koeffiienten fr fldet i indkomstndelen i første deil er på den grund eregnet til 1 pt.point dvs.. en tredjedel f den smlede stigning i Ginikoeffiienten. Bidrget er som det fremgår f ilgsfigur 2 - knyttet til omfordeling til især 9. deil, men også 8. og 10. deil. Bidrget til Gini-koeffiienten er større en fktor 1,7 end fldet i indkomstndelen i første deil på 0,6 pt.point. Det fspejler, t de indkomstgrupper, der går frem, ligger meget højere oppe. 8 deiler i gennemsnit i indkomstfordelingen. Beregningen peger desuden på, t lngt hovedprten f stigningen i Gini-koeffiienten knp 80 pt. - er en konsekvens f omfordeling i retning f 10. deil. de grønt mrkederede dele. Disse idrg er i eregningen henført til 1-6 deil, som lle oplever en nedgng i indkomstndelen. I deil er der med den nvendte metode lene tle om omfordeling til 10. deil. Nvnlig i de lve deiler er idrget til Ginikoeffiienten større end den indkomstmsse, som rent fktisk flyttes i retning f de deil. Det fspejler netop, t der her er tle om, t indkomstmssen flyttes et lngt stykke, fr den lve til den høje ende i fordelingen. Bilgsfigur 2: Bidrg til ændring i Gini-koeffiienten, ,0 1,5 1,0 Bidrg til stigning i Gini-koeffiient: - vi højeste deil D10 - vi næsthøjeste D9 - ndre 0,5 0,0 - Ændring i indkomstndel for deil -0,5-1,0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Anm.: Egne eregninger på ggrund f Dnmrks Sttistiks registerdt. Bidrg til ændringerne i Ginien er her henført til de deiler, der mister indkomstndele. Det ntges, t en nedgng i indkomstndel for et indkomst-deil hr sit modstykke i de nærmeste deiler, som går frem i ndele, og der regnes fr venstre mod højre. Fx er fldet i indkomstndelen for første deil fordelt så det først fylder op i D8, dernæst D9 og så D10, hvorefter idrget til Ginien kn eregnes med formel 1. Herefter fordeles fldet i indkomst-ndelen for ndet deil osv. Summen f idrgene til Ginien i figur 6 er 3,2, mens den fktiske stigning i Ginien vr 3,3 fr Dekomponeringen er således rimeligt præis.

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Den europæiske købekraftsundersøgelse - PPP

Den europæiske købekraftsundersøgelse - PPP Den europæiske køekrftsundersøgelse - PPP Den europæiske køekrftsundersøgelse - PPP... 2 1.Bggrund... 2 2.Køekrftpritet hvd er det?... 2 3.Formål og orgnistion... 3 4.Brugere og nvendelsesområder... 3

Læs mere

UGESEDDEL 52. . Dette gøres nedenfor: > a LC

UGESEDDEL 52. . Dette gøres nedenfor: > a LC UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Dødelighed og kræftforekomst i Avanersuaq. Et registerstudie

Dødelighed og kræftforekomst i Avanersuaq. Et registerstudie Dødelighed og kræftforekomst i Avnersuq. Et registerstudie Peter Bjerregrd, Anni Brit Sternhgen Nielsen og Knud Juel Indledning Det hr været fremført f loklbefolkningen i Avnersuq og f Lndsstyret, t der

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Vitaminer, mineraler og foderværdi af græsmarksarter

Vitaminer, mineraler og foderværdi af græsmarksarter Vitminer, minerler og foderværdi f græsmrksrter Kren Søegrd, Søren K. Jensen og Jko Sehested Det Jordrugsvidenskelige Fkultet, Arhus Universitet Smmendrg Med det formål t undersøge mulighederne for selvforsyning

Læs mere

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion)

Mere end blot lektiehjælp. Få topkarakter i din SRP. 12: Hovedafsnittene i din SRP (Redegørelse, analyse, diskussion) Mere end lot lektiehjælp Få topkrkter i din SRP 12: Hovedfsnittene i din SRP (Redegørelse, nlyse, diskussion) Hjælp til SRP-opgven Sidste år hjlp vi 3.600 gymnsieelever med en edre krkter i deres SRP-opgve.

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

ØKONOMISK ULIGHED i Danmark fra 1990 til i dag

ØKONOMISK ULIGHED i Danmark fra 1990 til i dag Uddelt ved møde i Gladsaxe om Den voksende fattigdom og den øgede ulighed, den 8. november 2016 ØKONOMISK ULIGHED i Danmark fra 1990 til i dag 1. Fakta om ulighed og fattigdom Det følgende er baseret på

Læs mere

Plantehoteller 1 Resultater og konklusioner

Plantehoteller 1 Resultater og konklusioner Plntehoteller 1 Resultter og konklusioner Hvid mrguerit 1. Umiddelrt efter kølelgring i op til 14 dge vr den ydre kvlitet ikke redueret 2. Mistede holdrhed llerede efter 7 dges kølelgring ved 4ºC og lv

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

ELEVER underviser elever En motiverende metode Drejebog med eksempler

ELEVER underviser elever En motiverende metode Drejebog med eksempler ELEVER underviser elever En motiverende metode Drejeog med eksempler Lyngy Tekniske Gymnsium Introduktion Lyngy Tekniske Gymnsium, HTX, hr i smrejde med Udviklingslortoriet for pædgogisk og didktisk prksis

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

International økonomi

International økonomi Interntionl økonomi Indhold Interntionl økonomi... 1 Bilg I1 Oversigt over smmenhæng mellem kompetencer og kernestof i 3 skriftlige eksmensopgver i Interntionl økonomi A.... 2 Bilg I2 Genrer i IØ fr oplæg

Læs mere

1. Andalusien - en provins i Spanien

1. Andalusien - en provins i Spanien 1. Andlusien - en prvins i Spnien Andres g hns fmilie skl pa ferie i Andlusien. I et rejsektlg finder de frskellige plysninger. Digrmmet viser fr hver maned, hvr mnge dge det regner mere end 1 mm i Mlg'

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Tolkningsrapport. Ella Explorer. October 15, 2008 FORTROLIGT

Tolkningsrapport. Ella Explorer. October 15, 2008 FORTROLIGT Tolkningsrpport Ell Explorer Otoer 1, 2 FORTROLIGT Tolkningsrpport Ell Explorer Introduktion Otoer 1, 2 Introduktion Anvendelse Denne rpport må udelukkende tolkes f kvlifierede rugere under overholdelse

Læs mere

Analyse. Løber de absolut rigeste danskere med (meget) små skridt fra alle andre? 11. august 2015. Af Kristian Thor Jakobsen

Analyse. Løber de absolut rigeste danskere med (meget) små skridt fra alle andre? 11. august 2015. Af Kristian Thor Jakobsen Analyse 11. august 215 Løber de absolut rigeste danskere med (meget) små skridt fra alle andre? Af Kristian Thor Jakobsen I andre vestlige lande har personerne med de allerhøjeste indkomster over de seneste

Læs mere

Pleje af fugtige vedvarende græsarealer ved kombination af græssende kvæg og maskiner Hvad sker der med planterne?

Pleje af fugtige vedvarende græsarealer ved kombination af græssende kvæg og maskiner Hvad sker der med planterne? Pleje f fugtige vedvrende græsreler ved komintion f græssende kvæg og mskiner Hvd sker der med plnterne? Liseth Nielsen og Ann Bodil Hld, Ntur & Lndrug ApS www.ntln.dk I det følgende eskrives: Opsummering

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning , i 1. Honningpriser Skemet viser vregt og priser pi dnsk og udenlndsk honning. o Hvor stor er prisen i lt for 2 brgre lynghonning og 3 bregre okologisk honning. o Hvor stor er forskellen i pris pi den

Læs mere

Matematisk modellering og numeriske metoder. Lektion 12

Matematisk modellering og numeriske metoder. Lektion 12 Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, 213 1 Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi

Læs mere

Overvågningssystem for levnedsmidler 1993-1997. Del 1.

Overvågningssystem for levnedsmidler 1993-1997. Del 1. Næringsstoffer Overvågningssystem for levnedsmidler 1993-1997. Del 1. Udrejdet f: Toren Leth Pi Knuthsen Erik Huusfeldt Lrsen Institut for Fødevreundersøgelser og Ernæring Overvågningssystem for levnedsmidler

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

De rigeste tjener mere og mere, mens de fattigste halter bagud

De rigeste tjener mere og mere, mens de fattigste halter bagud De rigeste tjener mere og mere, mens de fattigste halter bagud De seneste 30 år er uligheden vokset støt, og de rigeste har haft en indkomstfremgang, der er væsentlig højere end resten af befolkningen.

Læs mere

Center for Kvalitet Region Syddanmark

Center for Kvalitet Region Syddanmark Version 4.0 Side 1 f 64 Forftter Udgivelsesdto 27-03-2014 Version Version 4.0 Historik Overlæge, dr.med. Ulrik Gerdes Version 1.0 fr14-06-2013: Dele f indholdet i dette nott fndtes i en version 7.0 f et

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

JAGTEN POST 4: BØRNENES MAGASIN I BADSTUEGADE

JAGTEN POST 4: BØRNENES MAGASIN I BADSTUEGADE HISTORIEJAGTEN Kære lærere Tusind tk, fordi I vil deltge i Historiejgten. Her følger en kort vejledning til, hvordn Historiejgten kn ruges. Denne PDF indeholder ud over introduktionen: - Et rk med spørgsmål

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

KEGLESNIT OG BANEKURVER

KEGLESNIT OG BANEKURVER KEGLESNIT OG BANEKURVER x-klsserne Gmmel Hellerup Gymnsium INDHOLDSFORTEGNELSE INDHOLDSFORTEGNELSE... BEGREBET KEGLE... 3 KEGLESNIT... 5 Cirkel... 6 Ellipse... 8 Prbel... 15 Hyperbel... 19 Keglesnitsligninger

Læs mere

BENZOESYRE KAN ERSTATTE KOBBER I FODER TIL SMÅGRISE

BENZOESYRE KAN ERSTATTE KOBBER I FODER TIL SMÅGRISE BENZOESYRE KAN ERSTATTE KOBBER I FODER TIL SMÅGRISE MEDDELELSE NR. 057 Med % benzoesyre i foder til smågrise er det muligt t nedbringe niveuet f kobber i foderet mrknt og smtidig bevre smme produktivitet

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Den grønne kontakt til dine kunder. Kontakt med omtanke for miljø og økonomi

Den grønne kontakt til dine kunder. Kontakt med omtanke for miljø og økonomi Den grønne kontkt til dine kunder Kontkt med omtnke for miljø og økonomi 2 En fbryder der slukker lt, og en stikkontkt der reducerer stndby forbruget Energy Efficiency Energieffektivitet hndler ikke kun

Læs mere

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000. Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Krumningsradius & superellipsen

Krumningsradius & superellipsen Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det

Læs mere

abc Resultat af foranalysen vedrørende en reduktion af den danske stats aktiepost i Post Danmark A/S

abc Resultat af foranalysen vedrørende en reduktion af den danske stats aktiepost i Post Danmark A/S bc Resultt f fornlysen vedrørende en reduktion f den dnske stts ktiepost i Post Dnmrk A/S Mj 2003 Vigtigt Oplysningerne i dette dokument er uddrg fr eller bseret på oplysninger, som NM Rothschild & Sons

Læs mere

DANSK ARBEJDER IDRÆTSFORBUND. Cross Boule

DANSK ARBEJDER IDRÆTSFORBUND. Cross Boule DANSK ARBEJDER IDRÆTSFORBUND Cross Boule 1 Forord Cross Boule når som helst og hvor som helst Dnsk Arejder Idrætsforund er glde for t kunne præsentere Cross Boule - et oldspil, hvor lle kn være med. Spillet

Læs mere

114 Matematiske Horisonter

114 Matematiske Horisonter 114 Mtemtiske Horisonter Mtemtik i medicinudvikling Af Ph.d-studerende Ann Helg Jónsdóttir, Ph.d-studerende Søren Klim, Ph.d-studerende Stig Mortensen og Professor Henrik Mdsen, DTU Informtik Hovedpinen

Læs mere

Den grønne kontakt til dine kunder Kontakt med omtanke for miljø og økonomi

Den grønne kontakt til dine kunder Kontakt med omtanke for miljø og økonomi Den grønne kontkt til dine kunder Kontkt med omtnke for miljø og økonomi Stort energi- og stndby forbrug? En fbryder der slukker lt, og en stikkontkt der reducerer stndby forbruget Sluk for det hele......

Læs mere

Ikke tegn på øget lønspredning i Danmark

Ikke tegn på øget lønspredning i Danmark Ikke tegn på øget lønspredning i Danmark De Økonomiske Råd pegede i deres efterårsrapport 2016 på, at forskellene i erhvervsindkomsterne har været stigende, særligt i årene efter krisens start i 2008.

Læs mere

Øvelse 2: Risikoen for alle 3 sygdomme som forårsager halthed halveres

Øvelse 2: Risikoen for alle 3 sygdomme som forårsager halthed halveres Svrene Herned vises svrene på de forskellige spørgsmål. Svrene kn godt fvige fr jeres egne resultter som I hr fået ud f modellen. Afvigelserne skyldes vrition i modellen (stokstisk model!) og ændringer

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

DEN NY VERDEN vol. 37, nr. 1 International handel og vandel - WTO fra Marrakesh til Cancún

DEN NY VERDEN vol. 37, nr. 1 International handel og vandel - WTO fra Marrakesh til Cancún Interntionl hndel og vndel - WTO fr Mrrkesh til Cncún DIIS - Københvn - 2004 1 Efter gennemførelsen f ftlen om tekstil og beklædning (ATC) Fr MFA til ATC Beklædningsindustrien hr spillet en fgørende rolle

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS

ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS INTERNATIONAL KLASSIFIKATION AF FUNKTIONSEVNE, FUNKTIONSEVNENEDSÆTTELSE OG HELBREDSTILSTAND Udrbejdet f MrselisborgCentret, 2005 En spørgeskemundersøgelse

Læs mere

K9-K10 projekter i strukturel mekanik

K9-K10 projekter i strukturel mekanik April 2006 K8 Studerende K9-K10 projekter i strukturel meknik K8-studerende med interesse i t lve K9 eller K10 projekter inden for områderne Strukturel dynmik og erodynmik f store konstruktioner Aeroelsticitet,

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Analyse af varegrupper i det kommunale indkøb

Analyse af varegrupper i det kommunale indkøb Anlyse f vregrupper i det kommunle Afrpportering 16. jnur 2008 Fortroligt Frederiksgde 21, st. 1265 Københvn K Indholdsfortegnelse Anlyse f vregrupper i det kommunle 1. INDLEDNING OG OPSUMMERING... 3 2.

Læs mere

gudmandsen.net Geometri C & B

gudmandsen.net Geometri C & B gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5

Læs mere

Indkomster i de sociale klasser i 2012

Indkomster i de sociale klasser i 2012 Indkomster i de sociale klasser i 2012 Denne analyse er den del af baggrundsanalyserne til bogen Klassekamp fra oven. Analysen beskriver indkomstforskellene i de fem sociale klasser og udviklingen i indkomster

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Lukkede flader med konstant krumning

Lukkede flader med konstant krumning Lukkede flder med konstnt krumning Hns Anton Slomonsen Arhus Universitet Mrch 13, 2015 En flde i rummet B A giver nledning til to mål for fstnden mellem to punkter A og B på flden: - længden f den rette

Læs mere

Installationsvejledning

Installationsvejledning Dikin Altherm lvtempertur monolok ekstrvrmer EKMBUHCAV EKMBUHCA9W Dikin Altherm lvtempertur monolok ekstrvrmer Dnsk Indholdsfortegnelse Indholdsfortegnelse Om dokumenttionen. Om dette dokument... Om kssen.

Læs mere

Udtalelse om æglæggende høner

Udtalelse om æglæggende høner Det Dyreetiske Råd Udtlelse om æglæggende høner ustitsministeriet Civilkontoret Slotsholmsgde 10 1216 Københvn K uni 2001 Udtlelse om æglæggende høner 2001 Det Dyreetiske Råd Københvn Grfisk tilrettelægning:

Læs mere

Rekordstor stigning i uligheden siden 2001

Rekordstor stigning i uligheden siden 2001 30. marts 2009 af Jarl Quitzau og chefanalytiker Jonas Schytz Juul Direkte tlf.: 33 55 77 22 / 30 29 11 07 Rekordstor stigning i uligheden siden 2001 Med vedtagelsen af VK-regeringens og Dansk Folkepartis

Læs mere

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine.

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine. l. l(rb f dtmskine Pi overvejer t ksbe en dtmskine. Hvor meget ville Pi komme til t betle for dtmskinen PC 386, nar der betles 295 kr. pr. maned i36 maneder? Hvor meget ville hun spre ved t kobe kontnt?

Læs mere